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ABSTRACT

Time averaged Stanton number and surface-pressure distributions are reported for
the first-stage vane row, the first stage blade row, and the second stage vane row of the
Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. Unsteady pressure
envelope measurements for the first blade are also reported. These measurements were
made at 10%, 50%, and 90% span on both the pressure and suction surfaces of the first
stage components. Additional Stanton number measurements were made on the first
stage blade platform, blade tip, and shroud, and at 50% span on the second vane. A shock
tube was used as a short duration source of heated and pressurized air to which the
turbine was subjected. Platinum thin-film heat flux gages were used to obtain the heat-
flux measurements, while miniature silicon-diaphragm flush-mounted pressure
transducers were used to obtain the pressure measurements. The first stage vane Stanton
number distributions are compared with predictions obtained using a version of STANS
and a quasi-3D Navier-Stokes solution. This same quasi-3D N-S code was also used to

obtain predictions for the first blade and the second vane.
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SECTION 1
INTRODUCTION

The results described in this document are a summary of the work performed
under support of NASA Lewis Research Center Grant No. NAG3-581. This program was
initiated in 1986 with the purpose of providing fundamental data that could be used to
validate predictive codes that would be used to predict the heat transfer distributions and
pressure loadings for the SSME fuel-side turbopump. Prior to the time that a full scale
pump became available, the Garrett TFE 731-2HP turbine was used to develop techniques
for obtaining the basic data of interest and for investigating the applicability of various
predictive techniques. The results of this effort have been reported in Dunn, 1986, Dunn
et al., 1986, Rae et al., 1988, Taulbee, Tran, and Dunn, 1988, Dunn, et al., 1989, Dunn,
1990, Tran and Taulbee, 1991, and George, Rae and Woodward, 1991. Once the SSME
turbine stage became available, all attention focused on that machine with the purpose of:
(a) providing experimental information for code validation to the turbopump consortium,
and (b) to provide comparison data for a blowdown test rig at Marshall Space Flight
Center which uses the same multi-stage turbine. The program was structured so that
time-averaged, time-resolved, and phase-averaged data were to be obtained.

The results of several previous measurement programs that utilized many of the
same diagnostic techniques as used here, but for different turbine stages, have been
reported in Dunn and Stoddard, 1979 (Garrett TFE 731-2); Dunn and Hause, 1982
(Garrett TFE 731-2); Dunn, Rae, and Holt, 1984 (Garrett TFE 731-2); Dunn, Martin, and
Stanek (Air Force LART), 1986; Dunn and Chupp, 1988 (Teledyne 702); Dunn and
Chupp, 1989 (Teledyne 702); and Dunn, Bennett, Delaney, and Rao, 1990 (Allison Test
Turbine). The short-duration facility used for the experiments reported here is the same

one used to obtain the results reported in Dunn, Bennett, Delaney, and Rao, 1990.



The flow and heat transfer that occur in a turbine stage (or stages) represent one of
the most complicated environments seen in any practical machine: the flow is unsteady
(especially in the rotor), can be transonic, is generally three-dimensional, and is subjected
to strong body forces. Despite these problems, satisfactory designs and expansions of
operating envelopes have been achieved over the years due to the development of a sound
analytical understanding of the flow and heat-transfer mechanics that define performance
and to advances in materials and manufacturing processes. The analytical developments
were made possible by a series of approximations, in which the level of detail retained in
the modeling was sufficient to reveal important physical effects, while still allowing
solutions to be found by available analytical/numerical methods.

The major milestones in the development of these methods have been the
approximations that flow through each blade row is steady in coordinates fixed to the
blades, that three-dimensionality can be handled by treating a series of two-dimensional
flows in hub-to-shroud and blade-to-blade surfaces, and that the effects of viscosity can
be estimated by non-interacting boundary-layer calculations and by loss models to
account for secondary flow.

This technology base is surrounded by many analyses and numerical codes which
can treat the flow on higher levels of approximation, and which are used from time to
time to provide refined estimates of the flowfield and heat transfer, typically near a design
point. Three-dimensional and unsteady flow effects are two areas where recently
developed computational tools can provide useful information on the flow conditions, at
least for the first stage of a multistage turbine. However, in the secc~" 3~ subsequent
stages, these effects become more pronounced. The current state-of-the-art analyses can
predict reasonably well the second stage vane pressure distribution but the predicted heat-
flux levels on the second vane are not as good as desired as illustrated by Blair, Dring,
and Joslyn, 1988. These analyses are probably not adequate for the second rotor row, but

experimental data have not been generally available for comparison with the prediction.



The results presented in this report contribute heat-flux data for the midspan region of the
second stage vane.

Unsteadiness and three-dimensionality are direct consequences of the interaction
of blades moving through vane wakes and the impact of multiple blade rows. The
environment associated with the SSME fuel side turbine lends itself to a multistage
analysis. Until very recently, such an analysis would have been envisioned as a complete,
time-accurate, fully three-dimensional description of the flowfield. Some first steps
toward the calculation of such flows can be seen in the work of Rai, 1987 and Rai and
Madavan, 1988, but it is clear that the computational costs of this approach could very
quickly become prohibitive. An alternative to the Rai approach is that described by Habh,
1984. Metzger, Dunn, and Hah, 1990(a), used a flowfield defined using the calculated
technique described in Hah, 1984 to perform turbine tip and shroud heat-transfer
predictions for a Garrett TFE 731 HP turbine stage. These predictions were shown to
compare favorable with experimental results. Another approach to the problem is the one
proposed by Giles, 1988, which has also been applied to turbine data obtained in a short-
duration facility for a Rolls-Royce turbine by Abhari, Guenette, Epstein, and Giles, 1991.

Another approach to the problem is that described by Rao and Delaney, 1990,
which until the present time, has only been applied to a single stage. The method
proposed by these authors solves the quasi-three-dimensional Euler/Navier-Stokes
equations using the explicit hopscotch scheme. The full stage computation is performed
by coupling vane and blade solutions on overlapping O-type grids. In Dunn, Bennett,
Delaney, and Rao, 1990, comparisons are given between the predictions of Ru 207
Delaney, 1990, and experimental data that were obtained for a full-stage turbine using the
same experimental techniques described in this paper. Comparisons are presented for the
time-averaged surface pressure, the unsteady envelope of the surface pressure, and the
phase-resolved surface pressure near the trailing edge of the vane and on the blade. The

agreement between the predictions and the measurements was found to be very good.



Detailed heat-flux data of the same type mentioned above were also obtained and will be
presented in the open literature in the near future.

An alternate approach that is receiving current attention is based on a formulation
of the passage-averaged equations of Adamczyk, 1985 and 1986, which until now have
been used only as an analysis tool. It is apparent that this technique holds promise as the
basis of a design method whose physical basis is considerably advanced beyond the
current state of the art, and whose numerical implementation is simple enough to achieve
without the need for excessive hours of supercomputer time. The formulation of closure
models necessary to exploit Adamczyk's formulation relies on the availability of time-
resolved flowfield data. Some of this information can be obtained from the work of
Dring and Joslyn, 1986, who have probed the flow field within and around a one-and-
one-half stage rotating turbine.

Civinskas, Boyle, and McConnaughey, 1988, have previously presented an
analysis of the first stage blade of the turbine used here. The predictions presented here
are a continuation of that work. The Navier-Stokes analysis of heat transfer was done
using a modified version of the quasi-3D thin layer code developed by Chima, 1986. The
modifications are explained in Boyle, 1991. An additional change for the purposes of this
paper has been to incorporate the transition model of Mayle, 1991 for the first vane and
the intermittency model of Mayle and Dullenkopf, 1989, 1990, for the first blade and the
second vane. In addition to the quasi-3D Navier-Stokes analysis, the STANS (Crawford
and Kays, 1976) boundary layer analysis, as modified by Gaugler, 1981 was used. Both
the Navier-Stokes and boundary analyses used the MERIDL hub-to-shroud analysis of
Katsanis and McNally, 1977 to determine the stream tube variation at appropriate
spanwise locations. The edge conditions for the STANS boundary layer analysis were
obtained using the TSONIC analysis of Katsanis, 1969.

The rotor blade tip of a gas turbine engine moves in close proximity to the outer

stationary shroud. Typically, the gap between blade tip and shroud is kept as small as



possible in order to reduce losses. Active control of the gap is difficult and, even under
the best of conditions, does not reduce the gap to zero. It would not be desirable to
reduce this tip gap too much because during transient engine excursions a rotor rub might
occur which may be more detrimental to the engine than the tip losses are to the
performance. It is common practice for the turbine tip gap to be on the order of 1% to
1.5% of the blade height. The leakage flow is driven by the higher pressure on the blade
pressure surface forcing fluid through the gap towards the suction surface and can result
in relatively large heat transfer levels on the blade tip and on the blade suction surface in
the vicinity of 90% to 100% span near the trailing edge. Heat transfer levels on the
stationary shroud are also relatively large by comparison to blade midspan levels, but not
as large as on the tip.

Many authors have studied the flow in the tip gap region: e.g., Allen and
Kofskey, 1955; Booth, Dodge and Hepworth, 1982; Mayle and Metzger, 1982; Wadia
and Booth, 1982; Bindon, 1986; Moore and Tilson, 1988; and Metzger and Rued, 1989,
Heat-transfer measurements on the moving blades and the stationary shroud have been
made by Dunn, Rae and Holt, 1984(a) and 1984(b), Dunn, Martin and Stanek, 1986,
Dunn, 1989 and by Epstein, 1985 on the stationary shroud. Metzger, Dunn and Hah,
1990 applied the results of a three-dimensional Navier-Stokes solution (technique
described in Hah, 1984) obtained for the actual experimental conditions and turbine
(Garrett TFE 731-2-HP) to exercise a simple model of the tip flow and estimate the local
heat flux levels for comparison with the experimental results.

In the remainder of this report, Section 2 provides a description of the
experimental technique, the turbine flow path, and the instrumentation. Section 3
presents the experimental results and a comparison with predictions. Section 4 presents
an estimate of the turbine efficiency based on the measured heat-flux distributions and the
flowpath measurements. The appendicies provide information regarding the airfoil

coordinates, the instrumentation locations, along with a tabular listing of the data.



SECTION 2
DESCRIPTION OF THE EXPERIMENTAL TECHNIQUE, THE TURBINE
FLOW PATH, AND THE INSTRUMENTATION

2.1 The Experimental Technique

The measurements are performed utilizing a shock-tunnel to produce a short-
duration source of heated and pressurized gas that passes through the turbine. Air has
been selected as the test gas for these experiments. A schematic of the experimental
apparatus illustrating the shock tube, an expansion nozzle, a large dump tank and a device
that houses the turbine stage and provides the flow path geometry is shown in Figure
2 1.1. The shock tube has a 0.47-m (18.5-inch) diameter by 12.2-m (40-feet) long driver
tube and 0.47-m (18.5-inch) diameter by 18.3-m (60-feet) long driven tube. The driver
tube was designed to be sufficiently long so that the wave system reflected from the
endwall (at the left-hand end of the sketch) would not terminate the test time prematurely.
At the flow conditions to be run for these measurements, the test time is very long for a
shock tunnel facility being on the order of 40 milliseconds.

In order to initiate an experiment, the test section is evacuated while the driver,
the double diaphragm section, and the driven tube are pressurized to predetermined
values. Pressure values are selected to duplicate the design flow conditions. The flow
function wA/@ /&, wall-to-total temperature ratio (T, /Ty), stage pressure ratios, and
corrected speed are duplicated. The shock-tunnel facility has the advantage that the value
of T, can be set at almost any desired value in the range of 800 °R to 3500 °R (Shock
tubes obviously can operate at higher T, values than 3500 °R, but at the expense of test
time. Test time is a parameter that one does not sacrifice easily), and the test gas can be
selected to duplicate the desired specific heat ratio. The pressure ratio across the turbine
is established by the throat area of the flow control nozzle located at the exit end of the

device housing the turbine. It is desirable to locate this throat as close to the turbine exit
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as is practical to reduce the time required to fill the cavity between the rotor exit and the
choke. The model (shown later in Figure 2.3.1) is currently being redesigned to move the
throat closer to the turbine exit. Simple one-dimensional calculations provide a good first
estimate of the necessary exit area. Another characteristic of this facility is that the total
pressure (or the Reynolds number) at the entrance to the vane row can be changed by
moving the inlet to the device housing the turbine axially in the expanding nozzle flow so
as to intercept the flow at a different freestream Mach number. If this doesn't provide
sufficient range, then the reflected-shock pressure can be increased or the total
temperature can be decreased in order to increase the Reynolds number, which was the
approach taken in these tests.

Figure 2.1.2 is a photograph of the facility illustrating many of the components
described in the preceding paragraph. Figure 2.1.3 is a wave diagram for the shock tube.
The gas that subsequently passes through the turbine has been processed by both the
incident and the reflected shock shown in Figure 2.1.3. The reflected-shock reservoir gas
is expanded in the primary nozzle which has the effect of increasing the flow velocity,
decreasing the total pressure and maintaining the total temperature at the reservoir value.
The device housing the turbine will not pass all of the weight flow available in the
primary nozzle, so the inlet must be carefully located in order to avoid a hammer shock.
That is, there must be sufficient flow area for a normal shock to establish outside the inlet
and for the remainder of the flow not passed through the turbine to pass between the lip of
the inlet and the nozzle wall. If the inlet is placed too far into the nozzle, the nozzle flow
will be blocked and very large short-duration forces will be exerted on the device with
potentially disastrous effects. The flow downstream of the inlet normal shock is subsonic
at a pressure determined by the shock strength at the particular pick-off location in the

expansion.

2.2 The SSME Turbine
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Photographs of the first stage vane row (41 vanes), the first stage rotor row (63
blades), and the second stage vane row (39 vanes) are shown on Figures 2.2.1-2.2.5. The
second stage rotor (not shown) has 59 blades. The tip/shroud clearance for the first stage
rotor at the design speed condition is ~0.015 inches or 1.6% of blade height. Figures
2.2.1 and 2.2.2 show photographs of the front and rear view of the first-stage vane row
illustrating a cut-back (which was accounted for in the analysis to be described later) of
the vane near the hub endwall trailing edge. It can be seen that the surface finish of the
vane row is much smoother than it is for the blades. An enlarged photograph of the blade
surface qualitatively illustrating the surface roughness on the blade is shown on Figure
2.2.6. The surface roughness for this blade has been measured” and a typical
profilometer scan of the blade surface is given in Figure 2.2.7. The results shown in this
figure suggest an rms roughness of about 150,000 A which was used in the analysis of the
heat-transfer data. Figures 2.2.4 and 2.2.5 are photographs of the second vane illustrating
a surface finish comparable to the first vane and the absence of a cut-back at the trailing

edge. The vane and blade coordinates are listed in the Appendix in section A.1.

2.3 The Turbine Flow Path

Figure 2.3.1 is a drawing of the turbine stage illustrating the extent to which the
flowpath of the SSME hardware has been reproduced. The preburner dome and bolt, the
13 struts upstream of the first-stage vane, the 12 flow straighteners, and 6 struts
downstream of the second rotor have been included. At the exit of the model is a flow
chok  Mich is used to control both the mass flow through the turbine as well as the
turbine exit pressure. The choke area computed using a one-dimensional approximation

to the flow yielded exit areas very close to those required.

* Roughness measurements were performed at the United Technologies Research Center and supplied to
CUBRC courtesy of M. Blair. Figure 4(b) has been reproduced here with permission of M. Blair.
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Figure 2.2.1 PHOTOGRAPH OF SSME FUEL-SIDE TURBINE FIRST STAGE VANE, FRONT VIEW

CUT BACK OF VANE

Figure 2.2.2 PHOTOGRAPH OF SSME FUEL-SIDE TURBINE FIRST STAGE VANE, REAR VIEW
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Figure 2.2.4

Figure 2.2.5

PHOTOGRAPH OF SSME FUEL-SIDE TURBINE SECOND STAGE VANE, FRONT VIEW

PHOTOGRAPH OF SSME FUEL-SIDE TURBINE SECOND STAGE VANE, REAR VIEW
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6 ENLARGED PHOTOGRAPH OF FIRST BLADE SURFACE ROUGHNES

Figure 2.2.7 PROFILOMETER SCAN OF BLADE SURFACE
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Mounted onto the forward end of the drive motor shaft is a 1000 pulse/revolution
Hewlett Packard HEDS 5000 shaff encoder from which turbine speed and angular
position is determined. This unit outputs a TTL pulse every 360°/1000=0.36° and a
second TTL pulse once every revolution (the zero-crossing pulse). The shaft encoder was
initially aligned such that the zero-crossing pulse occurred when the stagnation point of
the first stage rotor blade containing the leading edge insert (heat-transfer) gage described
in the next section was 12.2° CCW from TDC of the first stage vane. The pulses from the
shaft encoder are used to trigger the data recording system. Since the turbine speed is not
kept constant during the run, a 25 MHz timing pulse in the form of a ramp signal is fed
into one channel of the high frequency data recorder to determine the arrival time of each
encoder pulse. Mounted on the downstream end of the shaft is a 200 channel, freon/oil

cooled, slip ring unit.

2.4 Heat-Flux Instrumentation

The heat-flux measurements were performed using thin-film resistance
thermometers. These devices represent an old and very well established technology that
was developed as part of the early hypersonics flow research work in the late 1950's for
measurement of heat-flux distributions in short-duration facilities. The thin-film gages
are made of platinum (~100 A thick) and are hand painted on an insulating Pyrex (7740)
substrate in the form of a strip that is approximately 1.02 x 10-4-m (0.004-in) wide by
about 5.08 x 10<4-m (0.020-in) long. The response time of the elements is on the order of
10-8 s. The substrates coni~’~i~ *he heat-flux gages are Epoxied within the base metal
throughout the turbine stage. The substrate onto which the gage is painted can be made in
many sizes and shapes.

Both button-type gages and the contoured leading-edge inserts were used for this
work. The first stage vane and blade row were instrumented using both types of

instrumentation along the 10%, 50%, and 90% span locations. Some gages were installed
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in the first stage blade shroud, blade platform, and blade tip. The second stage vane had
button gages only along the 50% span. The locations of the heat transfer instrumentation
are summarized in the Appendix in section A.2. Figure 2.4.1is a photograph of a rotor
blade that has been instrumented with button-types gages and Figure 2.4.2 is a
photograph of a blade containing a contoured leading-edge insert. Each of the gages has
two lead wires. The wires from the gages on the rotor are routed through the hollow shaft

to the slip-ring unit.

2.5 Pressure Instrumentation

Measurements were also obtained using miniature silicon diaphragm pressure
transducers located on the first-stage vane and the first-stage blade. The particular gages
being used are Kulite Model LQ-062-600A with an active pressure area of 0.64 mm by
0.64 mm, and a frequency response of about 100 kHz in the installed configuration.
Twenty-eight pressure transducers were installed on the vanes and twenty-four were
installed on the blades. The pressure transducers were placed at 10%, 50%, and 90%
span on the first vane and blade stages, and were distributed over several different vanes
and blades so as to not disturb the integrity of the surface. No pressure transducers were
installed in the second stage vane. The location of the surface mounted pressure
transducers are summarized in the Appendix in section A.2. Figure 2.5.1 is a photograph
of several of these transducers located at 10% span on the suction surface of the blade.
Each of these transducers has four leads--two power leads and two output leads. The
wires from the gages on the rotor are roz:~ * **~>ugh the hollow shaft to the slip-ring unit.

Flowpath static pressure was measured on the outer wall of the turbine model at
the inlet and exit to the turbine stages and between each blade row. The upstream static
pressure was nearly equal to the upstream total pressure because the inlet Mach number

was low (on the order of 0.1). The inlet Mach number was calculated and the inlet total
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pressure was obtained from the isentropic flow relationship. Total pressure was also

measured in the passage downstream of the second rotor using two rakes of transducers.

2.6 High Speed Data Acquisition

An attempt was made to obtain time resolved data for selected heat transfer and
pressure gages on the first stage rotor using a bank of 24 programmable, high-speed data
recording units (Datalab DL6010 and DL6020). These units were configured so that a
sample was recorded whenever a pulse was output by the shaft encoder, i.e., once every
0.36°. A separate timer box was used to measure the recording time after trigger. The
data obtained using this bank of high-speed recorders were, however, contaminated with
noise that was inadvertently introduced into the system. The unsteady pressure and heat
transfer envelopes therefore could not be obtained. This problem will be rectified by start

of the second phase of this program.



SECTION 3
EXPERIMENTAL RESULTS AND COMPARISON WITH PREDICTIONS

A total of thirteen runs were made during which several model configurations
were used. Of these thirteen runs and different model configurations, eight runs produced
data that could be used for the intentions of this research program. Some of the runs that
did not produce useable data were lost because of shock-tube diaphragm failures. The
remainder were lost in experimenting with the configuration of the model inlet duct.
Table 1 summarizes the reflected shock conditions, the flow conditions at the turbine
inlet, and the turbine speed for the eight runs to be discussed herein. Two shock tube
conditions were run for these experiments; the first at a reflected-shock pressure and
temperature of approximately 6.2 x 103 kPa (900 psia) and 544 K (980 °R), respectively,
and the second at a reflected-shock pressure and temperature of approximately 10 x 103
kPa (1445 psia) and 602 K (1084 °R), respectively. For a given test condition, the range
in reflected-shock pressure shown in Table 1 is the result of attempting to increase the test
time by changing the relative amount of helium in the driver gas which also influences
the incident shock Mach number and hence the reflected shock conditions. The two
reflected-shock conditions result in first vane inlet Reynolds numbers (based on first vane
chord) of approximately 1.4 x 105 and 2.5 x 105, respectively. Table 2(a) gives the
measured upstream, interstage, and exit pressures, and Table 2(b) provides the pressure
ratios for each of the vane and blade. rows. The area of the downstream flow choke was
changed so that data could be obtained at two values of stage pre-sure ratio, for each test
condition. Measurements were obtained with the turbine speed set at 100%%1% of the
design value or at approximately 103% of the design value. Limited data were obtained

at off-design speed.
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Run | W Prin Psin | Reflected | Reflected Re| Actual | % Design
(Ibm/s) : [psia) shock shock ) 5"°‘ speed | speed**
P out pressure temp. (x10°) (rpm)
" stage [psia) [’R]
%é —
1 9.52 — 90 865 949 2.39 6100 68
5 5.59 1.66 46.6 900 995 1.39 9075 99
6 5.81 1.65 48.3 929 990 1.44 9468 103
7 10.2 1.48 86 1519 1112 3.00 9612 99
8 9.74 1.38 89 1442 1084 2.69 9690 101
11 10.0 1.42 98 1369 1057 2.40 9585 101
12 5.83 1.54 48.3 925 981 1.45 9380 103
13 5.51 1.54 45.3 878 970 1.38 9365 103

*Reynolds number based on vane chord and vane inlet conditions.
N o = 291 4mpm /V °R

* %k
CO

Table 1--Summary of flow parameters.
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RunfPiimol Ps | Ps [ P | Ps P} Ppy Prin
1St | exiting | exiting | exiting | exiting | exiting _—
vane | 15tvane | 15t rotor | 27d vane | 27d rotor | 2Md rotor Py ,out P T, out
(psia) Sgsia) (psia) (psia) (psia) (psia) stage stage
PRSI — N R
1 90.0 78.5 67.6 — — — — -
5 47.1 40.4 34.3 30.5 28.3 29.1 1.66 1.62
6 48.9 43.0 36.4 32.5 29.7 30.4 1.65 1.61
7 86 77 70 63 58.3 59.9 1.49 1.45
8 89 82 75 63 64.3 64.4 1.40 1,40
11 98 90 79 71.5 69.0 67.5 1.44 1.47
12 | 48.8 43.3 37.3 34.1 31.7 32.2 1.54 1.52
13 | 45.8 40.3 34.7 32.0 29.7 30.2 1.54 1.52

Table 2a--Measured interstage pressures. Static pressure were measured at the outer shroud.

Run | First vane First stage Second vane Second rotor

P . P.. P . P .

T,in T,in s,in s,in

Ps,out Ps,out | Ps,out Ps.out
1 1.15 133 | — T -
5 1.17 1.37 1.12 1.08
6 1.14 1.34 1.12 1.09
7 1.13 1.24 1.11 1.08
8 1.10 1.20 1.10 1.06
11 1.10 1.26 1.10 1.04
12 1.13 1.31 1.09 1.08
13 1.14 1.32 1.08 1.08

Table 2b--Component pressure ratios. Static pressures were
measured at the outer shroud.




The Stanton number results presented here for both of the vane rows and the first
blade row are based on conditions at the first vane inlet. The relationship used to evaluate
the Stanton number was

q(T)

St= —
'S WA [Hy (T~ H (D] O

The value of A used for this evaluation was 1.73 x 10-2 m2 (0.186 ft2), and corresponds to
the annular area upstream of the first stage vane. In this formulation, the heat flux and the
wall enthalpy are both evaluated at the same temperature, T. If the cold-wall heat flux,
4(T ), is desired, then it can be obtained by multiplying the given Stanton number by
(W /A)[H (T, —H(T)]. The greatest contributor to the uncertainty in Stanton
number is the uncertainty in the weight flow, W . For these experiments, the weight flow
was found from an experimentally determined flow calibration curve supplied by NASA
MSFC which plotted the flow function as a function of the total to static pressure ratio
across the first stage nozzle. The uncertainty in the vane row pressure measurement
wranslate into an uncertainty in the flow function and the weight flow. An uncertainty of
approximately 10% in the weight flow was found. Assuming an uncertainty in the heat
flux and temperature measurements to be 5%, the expected error in the Stanton numbers

can be calculated using the methodology of Kline and McClintock, 1953 to be 12%.

3.1 First Vane and First Blade Surface Pressure Results

The measured surface pressure distributions on the first vane at 10%, 50%, and
90% span along with the predicted pressure distributions are presented on Figures 3.1.1-
3.1.3. These results are presented for two stage pressure ratios, approximately 1.54 and
1.65. The agreement between the dafa and the prediction at all three spanwise locations is
not particularly good. The cause of the disagreement is in large part attributable to the

uncertainty in the pressure measurement. Prior to the initial experiment, the pressure
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transducers were calibrated over the range from vacuum to 1.48 MPa (215 psia). During
and after the experiments, they were calibrated again from vacuum to 0.655 MPa (95
psia). These latter calibrations were done by pressurizing the dump tank housing the
turbine stage (see Figure 2.1.1). The pressure readings were recorded using the entire
data recording system that is used during the experiment. For a given transducer, a linear
fit was obtained for each data set over the pressure range of these experiments. The slope
of the calibrations for most of the transducers was reproducible to within 3%. For a few
others, the slope varied by as much as 5%. The pressure drop across the first vane row
and the first blade row is relatively small for this turbine, being on the order of 10% to
15% of the inlet total pressure, which makes the uncertainty in the slope of the transducer
calibration an important consideration. If a pressure measurement uncertainty of 3% due
to variations in the slope of the calibration equation is assumed, along with a 2%
uncertainty due to shock-tunnel reproducibility, the expected error in the normalized
pressures (P/P7) may be calculated using the methodology of Kline and McClintock
(1953) to be 4.7%. The difficulty encountered here with the pressure measurements was
unanticipated. A previous measurement program reported in Dunn, Bennett, Delaney,
and Rao, 1990(a) demonstrated much better agreement between measurements and
prediction. The calibration technique was the same in that work as used here. However,
the transducers used in Dunn, et al., 1990a were 0 to 100 psia units while those used in
this work were 0 to 600 psia units.

Figures 3.1.4, 3.1.5, and 3.1.6 present the measured surface pressure distributions
on the first blade at the 10%, 50% and 90% locations at both values of stage pressure
ratio. The same difficulties encountered with the vane pressure data described above
were also encountered with the blade data. The disagreement between the measurements
and the prediction are felt to be due to inaccuracy in the pressure measurement rather than

problems with the prediction.
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3.2 First Vane Surface Stanton Number Results

Figures 3.2.1 and 3.2.2 present the measured Stanton number distributions for the
vane at 50% span for Reynolds numbers of 140,000 and 250,000, respectively. Figure
3.2.3 presents the Stanton number data for both Reynolds numbers at 10% span and
Figure 3.2.4 presents data for both Reynolds numbers at 90% span. The low Reynolds
number data were obtained at stage pressure ratios of 1.54 and 1.65 while the higher
Reynolds number data were obtained at about 1.4 and 1.48. Inspection of the data
suggests that the stage pressure ratio, in general, has little influence on the Stanton
number distributions for the vane locations at which measurements were obtained.

The experimental results for the first vane presented in Figure 3.2.1 illustrate a
rapid decrease in Stanton number on the suction surface from the stagnation point to
about 15% wetted distance followed by a sharp increase near this location, then a peak at
about 50% wetted distance. On the pressure surface, the data fall sharply from the
stagnation point reaching a minimum at about 25% wetted distance, then increases
steadily towards the trailing edge. This trend in the pressure surface data is consistent
with that seen previously for the Garrett TFE731-2 HP turbine (Dunn, Rae and Holt,
1984), the Air Force LART (Dunn, Martin and Stanek, 1986) the Teledyne 702 turbine
(Dunn and Chupp, 1988), as well as two other unpublished Calspan data sets. The peak
Stanton number is shown to occur at the stagnation point and the maximum value reached
on the suction and pressure surfaces are comparable with each other and equal to a little
more than half of the stagnation value. Similar trends are seen at high Reynolds numbers
(Figures 3.2.2) but with the « == 1ms occurring closer to the stagnation point.
Furthermore, the maximum in the suction surface data also occurs closer to the stagnation
point.

Figure 3.2.1 also compares vane midspan experimental results with four
predictions. Two of the predictions are for fully turbulent flow. The third and fourth

predictions incorporate transition models. The two fully turbulent predictions were done
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using the quasi-3D Navier-Stokes analysis described by Boyle (1991) and Gaugler's
modified version the STANS boundary layer analysis of Crawford and Kays (1976). The
predictions including transition were obtained by incorporating the transition model of
Mayle, 1991 and the transition model due to Dunham, 1972 into the just noted Navier-
Stokes analysis. Of the two fully turbulent predictions, the STANS prediction illustrates
better overall agreement with the data. On the suction surface, the STANS prediction
doesn't fall as low as the data in the vicinity of 15% wetted distance, and it doesn't climb
as high as the data beyond 50% wetted distance. On the pressure surface, both of the
fully turbulent predictions agree with the data reasonably well from the stagnation point
to about 40% wetted distance. The data points at 60% and 80% wetted distance are
significantly greater than the prediction. It was noted earlier in this section that this trend
has been seen previously for full-stage turbines. This same trend was noted by Nealy, et
al., 1984 for a vane ring downstream of a combustor. However, the Navier-Stokes
analysis used here was applied to those data (Boyle, 1991) and reasonably good
agreement between data and prediction was obtained. It is felt that the relatively high
upstream turbulence in itself is not sufficient to account for the high pressure surface heat
wransfer, since the local turbulence level decreases significantly as the flow accelerates
through the vane passage. The good agreement between the STANS boundary layer
prediction and the Navier-Stokes fully turbulent analyses suggests that the numerical
solutions of the analyses are not the source of the disagreement with the experimental
data.

For the calculation incorporating the Dunham, 1972 transition model, transition
occurs midway along the suction §urfacc. However, the prediction is not in good
agreement with the experimental data from about 7% wetted distance to 50% wetted
distance. This analysis predicts Stanton numbers along the pressure surface that are
generally in agreement with STANS over the initial 50% of that surface. Beyond 50%,

the shape of the Dunham prediction deviates from the other two and falls below them and
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well below the data. This is because the flow never becomes fully turbulent with this
model. Also included on Figure 3.3.1 is the Navier-Stokes prediction with the Mayle,
1991 transition model incorporated. This prediction is in much better agreement with the
data than is the other prediction incorporating transition. Overall, the Navier-Stokes
prediction which includes the Maylé transition model appears to be in better agreement
with the data than any of the other predictions.

Figure 3.2.2 presents a comparison between the high Reynolds number data and
the same four predictions described above. There is very little difference among the
predictions at this higher Reynolds number except in the vicinity of the stagnation point
and in the region of 5% to 20% on the suction surface. Both the N-S and the STANS
solutions predict the stagnation region data reasonably well. The N-S solution with the
Mayle transition model predicts the 5% to 20% wetted distance region better than the N-§
solution with the Dunham model. On the pressure surface, all of the predictions are in
reasonably good agreement with each other and all fall below the data from the stagnation
point to about 40% wetted distance. The experimental results at 60% and 80% wetted
distance are underpredicted by a significant amount by all four solutions. In summary,
the predictions shown in Figures 3.2.1 and 3.2.2 show best agreement with the data when
a fully turbulent analysis is used, even for the low Reynolds number cases. The transition
models of both Mayle and of Dunham are highly dependent on the freestream turbulence
intensity. Previous measurements gave an intensity of about 6% at the turbine inlet. At
the low Reynolds number, Dunham's model predicts the start of transition too far
downstream on the suction surface. Mayle's model agrees better with the data. At the
high Reynolds number, transition occurs close to the leading edge, and there is little
difference among the predictions.

Figures 3.2.3 and 3.2.4 present the first vane Stanton number results at 10% and
90% span, respectively. Both sets of Reynolds number data are included on these figures.

The N-S prediction with the Mayle transition model has been selected for comparison
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with the experimental data. It would be anticipated that the high Reynolds number data
set should be consistently lower than the low Reynolds number data by about 15%
((2)02=1.15). There is sufficient uncertainty in the Stanton number results as described
in Section 4 that generally, the data sets appear to overlap. The agreement between the
suction surface prediction and the data is not as good as it was at midspan for either 10%
or 90% span. In general, beyond 50% wetted distance, the prediction fell well above the
data on the suction surface. The data point at 60% wetted distance is above the
prediction, but no more so than the suction surface data points are below the prediction.
The pressure surface data at 90% span are in as good agreement with the prediction as has

been seen at any location on this vane.

3.3 First Blade Surface Stanton Number Results

3.3.1 Discussion of blade data

Figures 3.3.1 and 3.3.2 present the measured Stanton number distributions for the
first blade at midspan for Reynolds numbers of 140,000 and 250,000, respectively. The
Reynolds number data sets are both given on the same figure for the 10% span (Figure
3.3.3) and the 90% span (Figure 3.3.4) locations. The heat-flux values in the vicinity of
the leading-edge region are known to be sensitive to incidence angle. However, the rotor
speed range over which data were taken in these experiments (99% to 103% of design)
was sufficiently small that it is unlikely that incidence angle had a significant effect.
Likewise, the local Stanton number is sensitive to stage pressure ratio because of the
change in incidence angle associated with the higher axial velocity (increased weight
flow) at the lower value of pressure ratio. From the weight flow data presented in Table 1
it was difficult to obtain an estimate of the incidence angle variation resulting from the
difference in pressure ratio. The experimental data (runs 5, 6, 12, and 13) at the 10% and
90% spanwise locations are consistent with each other near the leading edge in that the

Stanton numbers for runs 5 and 6 are consistently greater than those for runs 12 and 13.
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However, the trend in the Stanton nﬁmber results from these same runs at midspan are
opposite to that observed at 10% and 90% suggesting that if there was an influence, it
didn't occur all along the leading edge. Another interpretation of the data would be that
within the uncertainty of the data, no significant influence of pressure ratio or speed was
observed for the range of conditions used here. Beyond 50% wetted distance, the results
illustrate little influence on the Stanton number distribution for either the pressure or
suction surface. Returning for a moment to the midspan results presented on Figure
3.3.1, at the stagnation point the experimental results are in agreement with each other,
but immediately thereafter (from 0% to 15% wetted distance) on the suction surface and
in the vicinity of 12% wetted distance the data do not coalesce. Three of the runs (run 6,
12, and 13) shown on this figure were for nominally 103% of design speed, and the other
(run 5) for 99% of design speed. Two of the runs at 103% of design speed were for a
stage pressure ratio of 1.54 (runs 12 and 13) while the other two runs were at a pressure
ratio of about 1.65 (runs S and 6). At the 12% wetted distance location, two of the 103%
speed points (runs 12 and 13 for the same stage pressure ratio) are in good agreement
while the other one (run 6, higher pressure ratio) is low. Also note that runs 5 and 6,
which are for the same stage pressure ratio but different speeds (99% and 103%), are in
reasonably good agreement with each other suggesting that for this speed variation the
influence on Stanton number distribution is not large.

The experimental data presented on Figure 3.3.1 show that the Stanton number
fell rapidly from the stagnation point to about 10% wetted distance followed by a rapid
increase, reaching a maximum value for the suction surface at about 25% wetted distance.
On the pressure surface, the Stanton number increases from a minimum value in the
vicinity of 15% wetted distance to a maximum near 90% wetted distance. The maximum
values occurring on these two surfaces are comparable and well below the stagnation
point value. Included on Figure 3.3.1 are two fully turbulent Navier-Stokes predictions,

one for a rough airfoil and the other for a smooth airfoil, and a N-S prediction, with the

46



Mayle and Dullenkopf, 1989, 1990 intermittency model included, for a smooth airfoil.
The STANS boundary layer analysis showed separation for the midspan pressure surface
using the predicted inviscid flow field for a boundary condition and, therefore, the
STANS prediction could not be obtained for the blade. The Navier-Stokes analyses do
not indicate a significant increase in heat transfer due to blade surface roughness. On the
pressure surface both of the fully turbulent analyses are in good agreement with the
experimental data. However, on the suction surface these same predictions fall
consistently above the data. The third prediction included on Figure 3.3.1 is in essential
agreement with the fully turbulent predictions on the pressure surface. On the suction
surface, it also overpredicts the data, but is closer than the fully turbulent predictions.
The predicted heat transfer at the leading edge is higher than the experimental data. The
average augmentation of the heat transfer in the laminar region was calculated assuming a
turbulence intensity of 10%. The transition model used a background turbulence intensity
of 2%. The intermittency model overpredicted the heat transfer at the leading edge by
about 33%. This indicates that the augmentation due to freestream turbulence was
excessive. The Froessling number at the stagnation region was calculated from the
experimental results for this case, and using the cylinder in cross flow correlation of Traci
and Wilcox, 1975 a freestream turbulence intensity of about 7% was estimated.

Along the entire pressure surface the fully turbulent predictions are nearly
identical, and agree well with the experimental data. These predictions for the rotor are in
contrast with those for the vane, where the pressure surface heat transfer exceeded the
“ally turbulent prediction. The transitioning prediction, which includes the effect of
freestream turbulence, overpredicts the pressure surface heat transfer. The largest source
of uncertainty in the heat transfer predictions is due to the uncertainty in the freestream

turbulence for the augmentation of the laminar viscosity due to this freestream turbulence.

3.3.2 Blade surface roughness considerations
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The first stage blade of this turbine appeared to be rough and there was concern
that the roughness may enhance the heat transfer. Blair and Anderson, 1992 have
illustrated that this enhancement can be significant. The influence of surface roughness
on the blade data presented herein was therefore investigated.

Boyle and Civinskas, 1991, investigated the influence of surface roughness on the
predicted heat transfer to the surface. The effective roughness height was strongly
dependent on both the roughness and the density. The roughness density can be found
from the trace shown in Figure 2.2.7.' In this figure, the horizontal axis is compressed by
more than a factor of ten over the vertical axis. Even though the blade shown in Figure
2.4,1,2.4.2, and 2.5.1 are visibly rough, the peaks are not spaced closely together.

Comparing the two analyses shows that the effect of surface roughness is very
small. This was not unexpected. The insensitivity to surface roughness is the result of
both the low Reynolds number, and the effect of surface roughness density. In the
Navier-Stokes analysis a reference y* was used for an a priori determination of the grid
spacing. This reference value is given by

y:{EF =Q 17y Rel 97501
where y is the distance from the surface, Re is the exit Reynolds number per unit length,

and s is a characteristic distance.

An analogous reference roughness height is

+ 0.9, 0.1
kREF =0 17k Re " /s

For the low Reynolds number case the exit unit Reynolds number was 1.28 x

107/m (3.9 x 106/ft).
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The roughness height, k, in the above equations is not the actual roughness height,
but rather the equivalent roughness height. The equivalent roughness height was
estimated using the approach taken by Boyle and Civinskas, 1991 to be less than 0.3 of
the actual roughness height. Even though the actual roughness height was ~150,000 A

-+
(590 microinches), the value of ke was calculated to be only 2.7. This value of the

reference roughness height is only approximate since it is based on a friction factor for a
smooth flat plate. Nonetheless, the value of k* is less than the value of 5 for a
hydraulically smooth surface. Consequently, the rough and smooth heat transfer
predictions are nearly identical. It should be noted that blades with this surface
roughness, when operated in the SSME environment, are no longer hydraulically smooth
due to the much higher Reynolds number of the actual engine. Calculations showed an
increase in heat transfer of up to 25% due to surface roughness at the SSME operating
conditions for K=0.3. The parameter K represents the ratio of the equivalent roughness
height (k) to the actual roughness height.

Figure 3.3.2 presents the first blade midspan Stanton number data for the high
Reynolds number case. Also included on this figure are three N-S predictions which
were performed for different surface roughness heights. The N-S turbulent prediction
with K=0 is consistently above the N-S prediction with the Mayle and Dullenkopf
intermittency model. The value of Stanton number at the stagnation point is predicted
reasonably well by the N-S solution. On the suction surface, the N-S turbulent prediction
for a smooth surface (K=0) is consistently above the data. The prediction for K=0.3 is
about 12% highi. . the initial 50% of the surface, then about the same over the
remainder of the surface. The prediction for K=1.0 represents a significant enhancement
and is well above the data over the entire surface.

On the pressure surface of the blade, Figure 3.3.2 illustrates that the shape of the

predictions is consistent with the data. The predictions for K=0 and K=0.3 both fall
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below the data. The prediction for K=1.0 is in reasonable good agreement with the data
over the entire pressure surface.

Figures 3.3.3 and 3.3.4 present the experimental data and comparisons with
predictions for the 10% span and tﬁc 90% span locations, respectively. Both sets of
Reynolds number data are included on these figures. Figure 3.3.3 includes the fully
turbulent N-S predictions for both Reynolds numbers and the N-S prediction with the
Mayle and Dullenkopf intermittency model for the low Reynolds number. At the high
Reynolds number, this prediction is essentially the same as the corresponding N-S fully
turbulent prediction. For the suction surface, there is very little difference among the
three predictions. The data between 5% and 15% wetted distance are substantially below
the predictions, while the data between 50% and 80% are below, but in reasonable
agreement with the predictions. For the pressure surface, the fully turbulent prediction is
generally below the data while the intermittency model provides a reasonable
representation of the data. The comparison presented in Figure 3.3.4 for the 90% span
location demonstrates reasonably gobd agreement between the data and the intermittency
model prediction for the suction surface and correspondingly good agreement on the

pressure surface for the N-S fully turbulent prediction.

3.4  Second Vane Surface Stanton Number Results

The second vane Stanton number measurements are shown in Figures 3.4.1 for
both Reynolds number cases and both stage pressure ratios. For the second vane, only
midspan heat-flux data wer: . = .. Figure 3.4.1 also includes the predicted midspan
Stanton number distributions. A fully turbulent and an intermittency model prediction are
shown. The high Reynolds number intermittency prediction provides a good prediction at
the stagnation point. On the suction surface, the fully turbulent and the low Reynolds
number intermittency model predictions are conservative over the entire surface. The

high Reynolds number intermittency model prediction is a better representation of the
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data. On the pressure surface, both the fully turbulent and the low Reynolds number
intermittency models provide reasonable predictions of the data. The high Reynolds
number intermittency model prediction on this surface is lower than the other two

predictions by about 15% as would be anticipated.

3.5 Blade Platform, Blade Tip and Shroud Results for Design Speed Condition

Figures 3.5.1 and 3.5.2 present the blade platform Stanton number distribution for
the low and high Reynolds number conditions, respectively, at three values of overall
stage pressure ratio. At the higher Reynolds number, the data for the values of stage
pressure ratio are in reasonable agreement. The low Reynolds number results presented
in Figure 3.5.1 also suggest that the influence of pressure ratio is small. Further, the
influence of Reynolds number appears to be small. For both Reynolds number cases, the
trend of the data is to show a relatively small Stanton number increase in the chordwise
direction. However, with only two measurement locations, it is difficult to determine
anything more than this trend. The platform Stanton number values are of the same order
as the blade midspan values.

Figures 3.5.3 and 3.5.4 present the Stanton number results obtained from the
gages located in the blade tip at the low and high Reynolds number condition,
respectively. The high Reynolds number results of runs 7, 8 and run 11 (Figure 3.5.4)
were obtained at values of pressure ratio ranging from 1.38 to 1.48. The results of run 11
are shown to consistently fall below those of run 8. Run 7, which was performed at the
larger value of stage pressure ratio, prrlied results at the 75% chord location which are
not consistent with a well defined influence of pressure ratio on the tip Stanton number.
There also appears to be a rather wide range in Stanton number value at the 39% tip-
region measuring station. The low Reynolds number experiments (which were run at
stage pressure ratios of 1.54 and 1.65) illustrate even a more pronounced variation in

results at the 18% measuring station (shown on Figure 3.5.3) than was shown at 39% tip
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chord. There does not appear to be definitive influence of either Reynolds number or
stage pressure ratio on the heat transfer results. For both Reynolds number cases, the tip
region Stanton number values start out at small chord values with a rather wide variation,
but converge near midchord. At chord values less than 40%, the tip Stanton numbers are
on the order of the blade midspan values, but at large chord values the tip Stanton
numbers rapidly approach the blade stagnation point value.

Figures 3.5.5 and 3.5.6 present the Stanton number distributions on the stationary
shroud. The high Reynolds number data presented on Figure 3.5.6 illustrate a relatively
high value of Stanton number over the entire region for which data were obtained. Stage
pressure ratio does not appear to influence the results. Figure 3.5.5 presents
corresponding results for the low Reynolds number test case. The results for both
Reynolds numbers appear to be relatively independent of both Reynolds number and
stage pressure ratio. For both Reynolds number cases, the shroud Stanton numbers are
not as large as the blade stagnation point or tip values, but they are larger than the values
measured at other blade locations.

Figures 3.5.7 and 3.5.8 are composite plots of the platform, tip and shroud Stanton
number data as a function of blade chord. The root and tip locations are noted on the
abscissa. For the data presented in both of these plots, the tip data are shown to be
generally greater than either the platform or shroud data. The shroud data fall between

the tip and the platform levels.

3.6 Vane and Blade Surface Results for Off-Design Speed (68% Design Speed)

Figures 3.6.1-3.6.3 plot the Stanton number distributions for the 50%, high
Reynolds number runs on the first vane, first blade and second vane, respectively. These
are included to complete the comparison between full speed and off-design speed data.
As would be expected, speed has relatively little influence on the first vane for the vane

pressure ratio of this turbine (Figure 3.6.1). Figure 3.6.2 presents the first blade data and
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illustrates that in the vicinity of the leading edge, incidence angle has a noticeable
influence on the magnitude of the Stanton number. Beyond 20% wetted distance on the
pressure surface the influence of incidence angle is shown to be relatively small. For the
suction surface at wetted distances less than 30%, the trend is not consistent apparently
because of the transition location. At 50% wetted distance and beyond, the off-speed data
are generally above the design speed data. Figure 3.6.3 presents the second vane Stanton
number results. In the immediate region of the leading edge (5% to 10%), the off-design
turbine speed appears to have an influence on the second vane Stanton number
distribution. If there was going to be an influence, it is in this region that one would
expect it to occur. However, on the second vane, the influence dies out much more
rapidly than it did for the first blade, being essentially gone by about 5% wetted distance

on the pressure surface and by 20% wetted distance on the suction surface.

3.7 Blade Platform, Tip and Shroud Results for Off-Design Speed

Figures 3.7.1 -3.7.3 present a comparison of the off speed (68% of design value)
data with the design speed data for the blade platform, blade tip and the shroud,
respectively. The data presented were obtained at the high Reynolds number at a stage
pressure ratio of approximately 1.4 and 1.5. The results presented on Figure 3.7.1 for the
platform illustrate that at each of the locations, the Stanton number results do not appear
to be influenced by rotor speed. This is not surprising since both locations are
sufficiently far from the stagnation point that incidence angle should not be important.
Figure 3.7.2 compares the ~£" .- .d and design speed tip region data. For this region,
Metzger and Rued, 1989 have shown that blade relative motion should not have a
significant influence on the average tip region heat transfer. At two measuring stations,
the off speed results fall above the design speed values. However, at the third station, this
is not true and thus the results are inconclusive. Figure 3.7.3 presents the time averaged

shroud heat transfer results. The Stanton number is shown to have an increasing trend

65



pioyd uuoped 9,

001 08 09 oy 0cC 0
1 I 1 _ i 1 1 — 1 1 1 | 1 1 1 | i 1 1 o
................................. L $00°0
........ : - 8000
L
.............................. poads uBisop %01 i 2100
i=modud ‘pruny O -
paads uisop %66 i
gy [=Inod/uld ‘Luny @ -
.............................. poods i 9100
uisop %89 ‘runyd X -
200
“gjep paads 3jo yim uostedwod
000°0SZ~2Y ‘wojield apejq ayi uo uonngLIsIp oquiny uojuel§--1°L°¢ AUN3L]
J I J | | | I | | i | |

IaquInU UCIUEIS

66



p1oyd du apejq %

001 08 09 oy 0c 0
1 i ) | 1 1 1 1 i 1 1 | 1 i 1 1 1 O
‘ paads u31s9p %701 I .
¥ [=nod/uid ‘11 uny T v00'0
paads udisap %66
gy’ 1=mod/uld ‘L uny v
paads .
.............................. uBisop %89 ‘| uny - 8000
O O : bt 100
¢ -
é -
......................................................................................... 9100
00
‘eyep paads Jjo yiim uosuedwod
‘000°0SZ~9Y ‘dn ape|q ay) uo UOHNGLISIP JdqUINU UOURIS--T'L'€ aIng1y
J I | _ | I |

Iaquinu uoluel§

67



001

ployo dnapeiq

08 09 oy 1714
i 1 _ 1 1 i — 1 1 1 _ i S — i i
paads ugisop %701
v’ 1=Inod/fuld ‘11 uny
paads uBisop %66
8" 1=1n0d/uld ‘L uny
paads
udisop %89 ‘L uny @
...... : Q.
“ ®
m v
$ .
"eiep poads JJo ynm uosuedwod
“000'0S 7~ ‘Pnolys apelq syl Uo UONNGLISIP JoGuInu UoJuR)§--¢'L ¢ In3L]

v00°0

8000

(ALY

9100

<00

IaquInu UOUE)S

68



towards the blade trailing edge as would be anticipated because of the increasing driver
pressure on the flow through the tip in moving from the leading edge towards the trailing
edge. For a reduced rotor speed, a particular gage in the shroud would be exposed to the
tip gap flow for a longer period of time (per rotor revolution) but it is also clear of the
rotor tip for a longer period of time. The fraction of time for which the shroud gage is
covered by the tip is the same as it is for the higher speed. If the gap flow is the same,
then one would not expect to see a significant influence on Stanton number. However,
because the influence of rotor speed on the blade surface pressure distribution in the tip
region was not measured it is not possible to be certain that the tip flow was the same for

both speeds and thus it is difficult to close the discussion of this point.
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SECTION 4
CONCLUSIONS

Surface pressure and Stanton number distributions have been measured at selected
locations on the first vane, first blade and second vane of a full two-stage turbine. The
first vane and first blade pressure measurements have been compared with the prediction,
but the agreement was not particularly good because of difficulties with the measurement.
The measured Stanton number distributions at midspan for the first vane and the first
blade have been compared with predictions obtained using a quasi-3D N-S code and a
modified STANS technique. For the first vane, comparisons were presented for the fully
turbulent case and for the transition case using two transition models (Mayle, 1991 and
Dunham, 1972). At the low Reynolds number, the Mayle transition model and the fully
turbulent prediction provided good agreement with the suction surface data. The fully
turbulent, the Mayle transition model, and the Dunham transition model all provided
good agreement with the suction surface data for the high Reynolds number case. The
first vane pressure surface data were consistently underpredicted by all of the predictions.
The sensitivity of the predictions to flow parameters such as turbulence intensity, coupled
with the lack of agreement for the vane pressure surface heat transfer illustrates the
importance of correctly modeling the actual flow field in any heat transfer analysis.

The first blade data were compared to N-S turbulent and N-S with the Mayle and
Dullenkopf, 1989, 1990 intermittency model predictions. There is very little difference
between the results of these two predictions. For the blade suction surface, the
predictions were consistently above the data. The agreement between data and prediction
for the pressure surface was reasonably good.

The surface of the blade used in these experiments appeared to be very rough.
However, when the roughness density was accounted for, the analysis showed only a

small increase in blade heat transfer due to surface roughness. The relatively good
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agreement between the measured and predicted rotor heat transfer supports this
conclusion. In the analysis the effect of surface roughness is strongly dependent on
Reynolds number. Consequently, for the actual SSME engine operating conditions the
analysis predicts a significant increase in blade heat transfer due to surface roughness.

The second vane data were compared with N-S fully turbulent calculations and
with a N-S solution including the Mayle and Dullenkopf intermittency model. For the
suction surface, both calculations were generally conservative. However, for the pressure
surface, the predicted Stanton number distributions were in good agreement with the
experimental data.

The tip region was shown to exhibit high heat-transfer rates by comparison with
the blade stagnation-point value. The shroud Stanton number values were less than the
tip values, but higher than the platform values. Data were presented to illustrate the
influence of off-design rotor speed on the vane and blade Stanton number distributions.
The first vane Stanton number distribution was also not influenced by rotor speed. The
tip and shroud distributions were not significantly influenced by rotor speed. However,
both the first blade and the second vane were influenced by rotor speed in the vicinity of
the leading edge. This influence persisted on the first blade over a greater portion of the

surface than it did on the second vane.
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A.l Vane and Blade Coordinates

A.1.1 First Nozzle Coordinates

First nozzle, hub
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0.83329
0.83195
0.83086
0.83003
0.82639
0.82253
0.81843
0.81408
0.80950
0.80467
0.79959
0.79426
0.78868
0.78283
0.77673
0.77035
0.76370
0.75678
0.74957
0.74207
0.73427
0.72618
0.71778
0.70906
0.70002
0.69065
0.68093
0.67087
0.66044
0.64964
0.63846
0.62687
0.61488
0.60246
0.58959
0.57627
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0.62117
0.63877
0.65637
0.67397
0.69157
0.70917
0.72677
0.74437
0.76197
0.77957
0.79717
0.81477
0.83237
0.84997
0.86757
0.88517
0.90277
0.92037
0.93796
0.95556
0.97316
0.99066
0.99808
1.0055
1.0129
1.0203
1.0219
1.0242
1.0271
1.0302
1.0333
1.0360
1.0382
1.0396
1.0401
1.0400
1.0399
1.0397
1.0394
1.0284
1.0173
1.0063
0.99527
0.98424
0.97320
0.96217
0.95113
0.94010
0.93097
0.92174
0.91250
0.90327
0.89403
0.88480

0.56245
0.54814
0.53329
0.51789
0.50191
0.48530
0.46804
0.45009
0.43139
0.41189
0.39153
0.37025
0.34795
0.32454
0.29991
0.27391
0.24636
0.21706
0.18573
0.15198
0.11533
0.075653
0.058299
0.040945
0.023591
0.0062364
0.0036896
0.0016451
0.00037010
6.9900e-06
0.00059956
0.0020971
0.0043615
0.0071818
0.010294
0.011221
0.012141]
0.013047
0.013931
0.043257
0.072584
0.10191
0.13124
0.16056
0.18989
0.21921
0.24853
0.27786
0.30205
0.32639
0.35059
0.37464
0.39854
0.42227



106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

0.87557
0.86633
0.85710
0.84786
0.83863
0.82940
0.82016
0.81092
0.79861
0.78619
0.77377
0.76134
0.74892
0.73650
0.72408
0.71166
0.69924
0.68681
0.67439
0.66197
0.64955
0.63713
0.62471
0.61229
0.59987
0.58745
0.57503
0.56261
0.55019
0.53777
0.52535
0.51293
0.50051
0.48809
0.47567
0.46325
0.45083
0.43840
0.42598
0.41356
0.40114
0.38872
0.37630
0.36388
0.35146
0.33904
0.32662
0.31609
0.30546
0.29483
0.28420
0.27357
0.26294
0.25231

0.44583
0.46921
0.49239
0.51537
0.53813
0.56065
0.58292
0.60474
0.63284
0.65993
0.68587
0.71073
0.73442
0.75655
0.77724
0.79658
0.81467
0.83160
0.84745
0.86227
0.87615
0.88912
0.90125
0.91258
0.92316
0.93301
0.94219
0.95072
0.95863
0.96595
0.97271
0.97894
0.98465
0.98986
0.99460
0.99888
1.0027
1.0061
1.0091
1.0117
1.0140
1.0158
1.0173
1.0185
1.0193
1.0197
1.0199
1.0197
1.0194
1.0188
1.0180
1.0170
1.0158
1.0144
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160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

0.24168
0.23105
0.22042
0.20979
0.19916
0.18853
0.17789
0.16726
0.15663
0.14600
0.13537
0.12474
0.11411
0.10348
0.092848
0.082217
0.071586
0.060955
0.050325
0.039694
0.029063
0.018432
0.016656
0.014952
0.013325
0.011778
0.010314
0.0089374
0.0076500
0.0064551
0.0053553
0.0043528
0.0034499
0.0026486
0.0019505
0.0013573
0.00087012
0.00049013
0.00021811
5.4660e-05
1.4000e-07

1.0127

1.0109

1.0088

1.0065

1.0040

1.0012

0.99829
0.99509
0.99166
0.98797
0.98403
0.97981
0.97532
0.97052
0.96541
0.95996
0.95414
0.94792
0.94126
0.93412
0.92642
0.91809
0.91656
0.91496
0.91328
0.91153
0.90970
0.90781
0.90586
0.90385
0.90178
0.89967
0.89751
0.89532
0.89308
0.89082
0.88853
0.88623
0.88390
0.88157
0.87923



First nozzle, tip
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x [in]

y [in]

0.00013073  0.90027
0.00052177 0.89667

0.0011712
0.0020757
0.0032303
0.0046291
0.0062647
0.0081285
0.010211
0.012500
0.014985
0.017652
0.020488
0.023476
0.026603
0.029850
0.033202
0.036639
0.040145
0.058460
0.076775
0.095090
0.11341
0.13172
0.15004
0.16835
0.18667
0.20498
0.22330
0.24161
0.25993
0.27824
0.29656
0.31487
0.33319
0.35150
0.36982
0.38813
0.40645
0.42476
0.44308
0.46139
0.47971
0.49802
0.51634
0.53465
0.55297
0.57128
0.58960
0.60791
0.62623

0.89311
0.88961
0.88618
0.88284
0.87961
0.87651
0.87355
0.87075
0.86812
0.86568
0.86344
0.86140
0.85959
0.85801
0.85667
0.85557
0.85472
0.85086
0.84674
0.84237
0.83774
0.83285
0.82769
0.82227
0.81658
0.81062
0.80438
0.79786
0.79105
0.78395
0.77656
0.76887
0.76087
0.75256
0.74393
0.73498
0.72570
0.71607
0.70610
0.69577
0.68507
0.67400
0.66254
0.65068
0.63840
0.62570
0.61255
0.59895
0.58487
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0.64454
0.66286
0.68117
0.69949
0.71780
0.73612
0.75443
0.77275
0.79106
0.80938
0.82769
0.84601
0.86432
0.88264
0.90095
0.91927
0.93759
0.95590
0.97422
0.99253
1.0108
1.0291
1.0368
1.0445
1.0522
1.0599
1.0615
1.0638
1.0666
1.0697
1.0728
1.0755
1.0777
1.0791
1.0795
1.0795
1.0794
1.0791
1.0788
1.0673
1.0558
1.0444
1.0329
1.0215
1.0iue
0.99853
0.98707
0.97561
0.96612
0.95653
0.94694
0.93735
0.92776
091816

0.57030
0.55520
0.53957
0.52337
0.50657
0.48915
0.47107
0.45229
0.43276
0.41243
0.39125
0.36915
0.34606
0.32188
0.29652
0.26984
0.24171
0.21192
0.18026
0.14642
0.11002
0.071462
0.055074
0.038686
0.022298
0.0059098
0.0035365
0.0015731
0.00034483
9.4700e-06
0.00061660
0.0021187
0.0043802
0.0071925
0.010294
0.011300
0.012297
0.013276
0.014229
0.041904
0.069580
0.097256
0.12493
0.15261
0.18028
0.20796
0.23564
0.26331
0.28622
0.30942
0.33264
0.35589
0.37916
0.40247



106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

0.90857
0.89898
0.88939
0.87980
0.87020
0.86061
0.85102
0.84143
0.82864
0.81574
0.80284
0.78994
0.77705
0.76415
0.75125
0.73835
0.72545
0.71255
0.69966
0.68676
0.67386
0.66096
0.64806
0.63516
0.62226
0.60936
0.59647
0.58357
0.57067
0.55777
0.54487
0.53197
0.51907
0.50617
0.49327
0.48038
0.46748
0.45458
0.44168
0.42878
0.41588
0.40298
0.39008
0.37718
0.36429
0.35139
0.33849
0.32756

0.42580
0.44917
0.47258
0.49602
0.51950
0.54302
0.56657
0.58987
0.62037
0.65049
0.67992
0.70864
0.73632
0.76214
0.78617
0.80855
0.82939
0.84878
0.86684
0.88363
0.89925
0.91376
0.92724
0.93974
0.95133
0.96205
0.97195
0.98109
0.98949
0.99722
1.0043
1.0107
1.0166
1.0219
1.0267
1.0310
1.0348
1.0382
1.0411
1.0436
1.0457
1.0475
1.0489
1.0499
1.0506
1.0511
1.0512
1.0510
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154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

0.31652
0.30548
0.29444
0.28340
0.27236
0.26132
0.25028
0.23924
0.22820
0.21716
0.20612
0.19507
0.18403
0.17299
0.16195
0.15091
0.13987
0.12883
0.11779
0.10675
0.095713
0.084673
0.073633
0.062593
0.051553
0.040513
0.029472
0.018432
0.016656
0.014952
0.013325
0.011778
0.010314
0.0089374
0.0076500
0.0064551
0.0053553
0.0043528
0.0034499
0.0026486
0.0019505
0.0013573
0.00087013
0.00049013
0.00021811
5.4670e-05
1.5000e-07

1.0506
1.0499
1.0490
1.0479
1.0465
1.0448
1.0430
1.0409
1.0386
1.0361
1.0333
1.0303
1.0271
1.0237
1.0200
1.0160
1.0118
1.0073
1.0025
0.99746
0.99208
0.98635
0.98026
0.97377
0.96683
0.95940
0.95141
0.94276
0.94123
0.93963
0.93795
0.93619
0.93437
0.93248
0.93053
0.92851
0.92645
0.92434
0.92218
0.91998
0.91775
0.91548
0.91320
0.91089
0.90856
0.90623
0.90389



y [in]

0.2 0 0.2 0.4 0.6 0.8 ] 1.2
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Figure A..1.1--First nozzle: tip, midspan, and hub
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A.1.2 First Rotor Coordinates

First rotor, hub

x [in]
1 0.12085
2 0.12139
3 0.12192
4 0.12246
5 0.12299
6 0.12352
7 0.12406
8 0.12459
9 0.12513
10 0.12556
11 0.13846
12 0.15136
13 0.16426
14 0.17716
15 0.19007
16 0.20297
17 0.21587
18 0.22877
19 0.24167
20 0.25457
21 0.26747
22 0.28037
23 0.29327
24 0.30617
25 0.31907
26 0.33197
27 0.34487
28 0.35777
29 0.37067
30 0.38357
31 0.39648
32 0.40938
33 0.42228
34 0.43518
35 0.44808
36 0.46098
37 0.47388
38 0.486738
39 0.49968
40 0.51258
41 0.52548
42 0.53838
43 0.55128
44 0.56418
45 0.57708
46 0.58998
47 0.60288
48 0.61579

y[in]

0.22903
0.22218
0.21942
0.21733
0.21558
0.21406
0.21270
0.21146
0.21031
0.20943
0.18586
0.16523
0.14691
0.13049
0.11568
0.10227
0.090094
0.079021
0.068951
0.059799
0.051497
0.043990
0.037227
0.031170
0.025784
0.021040
0.016912
0.013379
0.010424
0.0080306
0.0061865
0.0048812
0.0041060
0.0038545
0.0041218
0.0049050
0.0062027
0.0080152
0.010344
0.013194
0.016569
0.020478
0.024929
0.029933
0.035504
0.041659
0.048416
0.055799
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0.62869
0.64159
0.65449
0.66739
0.68029
0.69319
0.70609
0.71899
0.73189
0.74479
0.75759
0.76711
0.77662
0.78613
0.79565
0.80516
0.81468
0.82419
0.83371
0.84322
0.85273
0.86225
0.87176
0.88128
0.89079
0.90030
0.90982
0.91933
0.92885
0.93826
0.93867
0.93897
0.93915
0.93921
0.93879
0.93756
0.93563
0.93316
0.93035
0.92745
0.92470
0.92233
0.92053
0.90538
0.89012
0.87486
0.85960
0.84435
0.82909
0.81383
0.79857
0.78331
0.76806

0.063833
0.072549
0.081985
0.092182
0.10319
0.11508
0.12791
0.14177
0.15679
0.17309
0.19071
0.20483
0.21971
0.23524
0.25133
0.26791
0.28492
0.30232
0.32006
0.33812
0.35647
0.37509
0.39394
0.41303
0.43232
0.45180
0.47147
0.49130
0.51130
0.53123
0.53225
0.53331
0.53439
0.53549
0.53836
0.54099
0.54316
0.54468
0.54543
0.54534
0.54442
0.54274
0.54046
0.51508
0.49148
0.46955
0.44909
0.42991
0.41190
0.39494
0.37895
0.36386
0.34960



102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

0.75280
0.73754
0.72228
0.70703
0.69177
0.67651
0.66125
0.64599
0.63074
0.61548
0.60022
0.58496
0.56971
0.55445
0.53919
0.52393
0.50867
0.49342
0.47816
0.46290
0.44764
0.43238
0.41713
0.40187
0.38661
0.37135
0.35610
0.34084
0.32558
0.31032
0.29506
0.27981
0.26455
0.24929
0.23403
0.21878
0.20352
0.18826
0.17300
0.17157
0.17003
0.16849
0.16696
0.16542
0.16388
0.16234
0.16081
0.15927
0.15773
0.15620
0.15466
0.15312
0.15159
0.15005

0.33613
0.32339
0.31135
0.29999
0.28927
0.27916
0.26964
0.26071
0.25233
0.24451
0.23721
0.23045
0.22420
0.21845
0.21322
0.20849
0.20425
0.20051
0.19727
0.19452
0.19228
0.19054
0.18931
0.18860
0.18841
0.18875
0.18964
0.19109
0.19311
0.19572
0.19895
0.20281
0.20734
0.21257
0.21852
0.22526
0.23282
0.24127
0.25067
0.25157
0.25247
0.25330
0.25406
0.25476
0.25540
0.25597
0.25649
0.25694
0.25733
0.25767
0.25794
0.25814
0.25829
0.25837
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156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

0.14851
0.14698
0.14544
0.14390
0.14237
0.14083
0.13929
0.13776
0.13622
0.13468
0.13315
0.13161
0.13007
0.12854
0.12700
0.12546
0.12393
0.12239



First rotor, midspan
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x [in]

0.17979
0.18048
0.18117
0.18186
0.18255
0.18325
0.18394
0.18463
0.18532
0.18588
0.19747
0.20907
0.22066
0.23226
0.24386
0.25546
0.26706
0.27866
0.29026
0.30186
0.31346
0.32506
0.33667
0.34827
0.35987
0.37147
0.38308
0.39468
0.40628
0.41789
0.42949
0.44109
0.45269
0.46430
0.47590
0.48750
0.49911
0.51071
0.52231
0.53392
0.54552
0.55712
0.56873
0.58033
0.59193
0.60353
0.61514
0.62674
0.63834
0.64995

y[in]

0.15760
0.15051
0.14765
0.14549
0.14370
0.14215
0.14077
0.13953
0.13838
0.13752
0.11992
0.10432
0.090363
0.077786
0.066406
0.056082
0.046707
0.038194
0.030473
0.023488
0.017191
0.011543
0.0065094
0.0020632
-0.0018200
-0.0051603
-0.0079749
-0.010278
-0.012082
-0.013396
-0.014227
-0.014583
-0.014466
-0.013880
-0.012825
-0.011300
-0.0093034
-0.0068301
-0.0038744
-0.00042857
0.0035173
0.0079753
0.012960
0.018489
0.024584
0.031268
0.038571
0.046529
0.055183
0.064584
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0.66155
0.67315
0.68476
0.69636
0.70796
0.71956
0.73117
0.74277
0.75428
0.76284
0.77140
0.77996
0.78851
0.79707
0.80563
0.81418
0.82274
0.83130
0.83986
0.84841
0.85697
0.86553
0.87408
0.88264
0.89120
0.89975
0.90831
0.91677
0.91715
0.91742
0.91759
0.91764
0.91722
0.91598
0.91403
0.91154
0.90871
0.90578
0.90301
0.90061
0.89881
0.88521
0.87153
0.85784
0.84416
0.83047
0.81679
0.80310
0.78942
0.77573
0.76205
0.74836
0.73468
0.72099

0.074794
0.085889
0.097967
0.11116
0.12560
0.14120
0.15788
0.17563
0.19430
0.20889
0.22401
0.23958
0.25556
0.27189
0.28854
0.30549
0.32269
0.34014
0.35780
0.37567
0.39373
0.41197
0.43037
0.44893
0.46763
0.48647
0.50544
0.52432
0.52530
0.52631
0.52735
0.52839
0.53127
0.53391
0.53608
0.53760
0.53833
0.53822
0.53725
0.53550
0.53307
0.50815
0.48428
0.46148
0.43968
0.41879
0.39876
0.37956
0.36116
0.34353
0.32665
0.31053
0.29513
0.28046



105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

0.70731
0.69362
0.67994
0.66625
0.65257
0.63888
0.62520
0.61151
0.59783
0.58414
0.57046
0.55677
0.54309
0.52940
0.51572
0.50204
0.48835
0.47467
0.46098
0.44730
0.43361
0.41993
0.40624
0.39256
0.37887
0.36519
0.35151
0.33782
0.32414
0.31045
0.29677
0.28309
0.26941
0.25572
0.24204
0.22836
0.22703
0.22559
0.22416
0.22273
0.22130
0.21987
0.21844
0.21701
0.21558
0.21415
0.21271
0.21128
0.20985
0.20842
0.20699
0.20556
0.20413
0.20270

0.26652
0.25330
0.24079
0.22899
0.21790
0.20751
0.19783
0.18884
0.18053
0.17291
0.16596
0.15967
0.15404
0.14905
0.14468
0.14094
0.13781
0.13527
0.13331
0.13193
0.13111
0.13085
0.13113
0.13194
0.13328
0.13515
0.13754
0.14044
0.14387
0.14782
0.15230
0.15731
0.16288
0.169500
0.17572
0.18304
0.18375
0.18445
0.18507
0.18564
0.18614
0.18658
0.18696
0.18728
0.18754
0.18775
0.18790
0.18799
0.18802
0.18799
0.18790
0.18775
0.18753
0.18724
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159
160
161
162
163

165
166
167
168
169
170
171
172
173

0.20126
0.19983
0.19840
0.19697
0.19554
0.19411
0.19268
0.19124
0.18981
0.18838
0.18695
0.18552
0.18409
0.18265
0.18122

0.18689
0.18645
0.18594
0.18535
0.18466
0.18387
0.18297
0.18194
0.18077
0.17943
0.17787
0.17605
0.17386
0.17113
0.16736



First rotor, tip

D OO ~IONW W —

B et et ek et et b ok et et et
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N
w

x [in]

0.23860
0.23945
0.24030
0.24115
0.24200
0.24285
0.24370
0.24455
0.24540
0.24609
0.25639
0.26670
0.27700
0.28731
0.29762
0.30792
0.31823
0.32853
0.33884
0.34914
0.35945
0.36975
0.38006
0.39036
0.40067
0.41098
0.42128
0.43159
0.44189
0.45220
0.46250
0.47281
0.48311
0.49342
0.50372
0.51403
0.52434
0.53464
0.54495
0.55525
0.56556
0.57586
0.58617
0.59647
0.60678
0.61708
0.62739
0.63770
0.64800
0.65831

y [in]

0.086311
0.078986
0.076022
0.073796
0.071961
0.070380
0.068984
0.067731
0.066594
0.065741
0.054062
0.043481
0.033867
0.025118
0.017155
0.0099103
0.0033318
-0.0026254
-0.0079985
-0.012819
-0.017113
-0.020902
-0.024207
-0.027043
-0.029424
-0.031360
-0.032861
-0.033935
-0.034587
-0.034822
-0.034641
-0.034047
-0.033039
-0.031615
-0.029772
-0.027506
-0.024810
-0.021675
-0.018093
-0.014051
-0.0095350
-0.0045274

0.00099160

0.0070458
0.013663
0.020877
0.028727
0.037260
0.046534
0.056619
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0.66861
0.67892
0.68922
0.69953
0.70983
0.72014
0.73044
0.74075
0.75098
0.75858
0.76618
0.77378
0.78138
0.78898
0.79658
0.80418
0.81178
0.81938
0.82698
0.83458
0.84218
0.84978
0.85738
0.86498
0.87258
0.88018
0.88778
0.89530
0.89564
0.89588
0.89603
0.89608
0.89565
0.89440
0.89244
0.88993
0.88708
0.88413
0.88133
0.87892
0.87709
0.86506
0.85295
0.84083
0.82872
0.81661
0.80449
0.79238
0.78027
0.76815
0.75604
0.74393
0.73181
0.71970

0.067602
0.079595
0.092741
0.10724
0.12330
0.14063
0.15898
0.17816
0.19790
0.21295
0.22830
0.24392
0.25979
0.27588
0.29217
0.30866
0.32532
0.34215
0.35913
0.37626
0.39353
0.41092
0.42844
0.44607
0.46381
0.48165
0.49959
0.51744
0.51837
0.51933
0.52032
0.52131
0.52421
0.52685
0.52903
0.53054
0.53126
0.53112
0.53011
0.52829
0.52569
0.50124
0.47709
0.45343
C.42028
0.40767
0.38564
0.36419
0.34338
0.32321
0.30373
0.28494
0.26689
0.24960



105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

0.70759
0.69547
0.68336
0.67125
0.65913
0.64702
0.63490
0.62279
0.61068
0.59856
0.58645
0.57434
0.56222
0.55011
0.53800
0.52588
0.51377
0.50166
0.48954
0.47743
0.46532
0.45320
0.44109
0.42898
0.41686
0.40475
0.39264
0.38052
0.36841
0.35630
0.34418
0.33207
0.31996
0.30784
0.29573

0.23308
0.21736
0.20245
0.18837
0.17513
0.16274
0.15119
0.14051
0.13067
0.12168
0.11352
0.10618
0.099647
0.093900
0.088917
0.084676
0.081152
0.078319
0.076149
0.074617
0.073693
0.073351
0.073563
0.074301
0.075540
0.077254
0.079418
0.082008
0.085002
0.088377
0.092112
0.096189
0.10059
0.10529
0.11028
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140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

165
166
167
168
169
170
171
172
173

0.28362
0.28238
0.28105
0.27972
0.27840
0.27707
0.27574
0.27442
0.27309
0.27176
0.27044
0.26911
0.26778
0.26646
0.26513
0.26381
0.26248
0.26115
0.25983
0.25850
0.25717
0.25585
0.25452
0.25319
0.25187
0.25054
0.24921
0.24789
0.24656
0.24523
0.24391
0.24258
0.24125
0.23993

0.11554
0.11607
0.11656
0.11698
0.11735
0.11765
0.11789
0.11808
0.11821
0.11829
0.11831
0.11828
0.11819
0.11804
0.11784
0.11758
0.11726
0.11688
0.11644
0.11593
0.11536
0.11471
0.11398
0.11316
0.11225
0.11124
0.11011
0.10885
0.10743
0.10582
0.10396
0.10177
0.099068
0.095429



y [in]

Figure A.1.2--First rotor: tip, midspan, hub.



A.1.3 Second Nozzle Coordinates
49 0.48530 0.61780

Second nozzle, hub 50 0.50310 0.60810
51 0.52100 0.59770
x [in] y[in] 52 0.53890 0.58670
53 0.55680 0.57510
1 0.067200 0.71990 54 0.57470 0.56290
2 0.067500 0.71690 55 0.59260 0.55000
3 0.068000 0.71390 56 0.61050 0.53650
4 0.068700 0.71100 57 0.62840 0.52230
5 0.069500 0.70800 58 0.64630 0.50740
6 0.070600 0.70520 59 0.66410 0.49180
7 0.071800 0.70240 60 0.68200 0.47560
8 0.073100 0.69970 61 0.69990 0.45860
9 0.074700 0.69710 62 0.71780 0.44080
10 0.076400 0.69460 63 0.73570 0.42220
11 0.078300 0.69220 64 0.75360 0.40290
12 0.080300 0.68990 65 0.77150 0.38260
13 0.082400 0.68780 66 0.78940 0.36150
14 0.084700 0.68580 67 0.80730 0.33940
15 0.087100 0.68390 68 0.82510 0.31630
16 0.089600 0.68220 69 0.84300 0.29210
17 0.092200 0.68070 70 0.86090 0.26680
18 0.094900 0.67930 71 0.87880 0.24020
19 0.097700 0.67810 72 0.89670 0.21230
20 0.10060 0.67710 73 0.91460 0.18290
21 0.10350 0.67630 74 0.93250 0.15180
22 0.10650 0.67560 75 0.95040 0.11890
23 0.10950 0.67520 76 0.96830 0.083800
24 0.11250 0.67490 77 0.98610 0.046300
25 0.11550 0.67480 78 1.0039 0.0060000
26 0.11850 0.67490 79 1.0046 0.0048000
27 0.12150 0.67520 80 1.0054 0.0036000
28 0.12450 0.67570 81 1.0064 0.0026000
29 0.12750 0.67640 82 1.0075 0.0017000
30 0.14540 0.68050 83 1.0087 0.0010000
31 0.16330 0.68380 84 1.0101 0.00050000
32 0.18120 0.68620 85 1.0115 1.0000e-04
33 0.19900 0.68770 86 1.0129 0.0000
34 0.21690 0.68850 87 1.0143 1.0000e-04
35 0.23480 0.68850 88 1.0157 0.00040000
36 0.25270 0.68780 89 1.0170 0.00080000
37 0.27060 0.68630 90 1.0183 0.0015000
38 0.28850 0.68410 91 1.0194 0.0024000
39 0.30640 0.68130 92 1.0205 0.0034000
40 0.32430 0.67780 93 1.0213 0.0045000
41 0.34220 0.67360 94 1.0220 0.0057000
42 0.36000 0.66880 95 1.0225 0.0071000
43 0.37790 0.66340 96 1.0228 0.0085000
44 0.39580 0.65730 97 1.0229 0.0099000
45 0.41370 0.65070 98 1.0229 0.010300
46 0.43160 0.64340 99 1.0229 0.010600
47 0.44950 0.63550 100 1.0229 0.011000

48 0.46740 0.62690 101 1.0228 0.011400
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102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

1.0227

1.0227

1.0226

1.0225

1.0223

1.0047

0.98700
0.96930
0.95160
0.93400
0.91630
0.89860
0.88090
0.86320
0.85820
0.85300
0.84790
0.84280
0.83760
0.83250
0.82730
0.82220
0.81700
0.81190
0.80670
0.80160
0.79640
0.79130
0.77680
0.76210
0.74750
0.73290
0.71830
0.70360
0.68900
0.67440
0.65980
0.64520
0.63050
0.61590
0.60130
0.58670
0.57210
0.55740
0.54280
0.52820
0.51360
0.49500
0.48430
0.46970
0.45510
0.44050
0.42580
041120

0.011800
0.012100
0.012500
0.012800
0.013200
0.062800
0.11240
0.16200
0.21160
0.26120
0.31070
0.36030
0.40990
0.45950
0.47360
0.48760
0.50150
0.51510
0.52840
0.54140
0.55420
0.56680
0.57900
0.59100
0.60260
0.61400
0.62500
0.63580
0.66370
0.68850
0.71090
0.73110
0.74950
0.76640
0.78200
0.79630
0.80960
0.82190
0.83320
0.84370
0.85340
0.86230
0.87050
0.87800
0.88480
0.89100
0.89660
0.90150
0.90580
0.90960
0.91280
0.91540
0.91740
0.91880
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156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

0.39660
0.38200
0.36740
0.35270
0.33810
0.32350
0.30890
0.29430
0.27960
0.26500
0.25040
0.23580
0.22110
0.20650
0.19190
0.17730
0.16270
0.14800
0.13340
0.11880
0.10420
0.089600
0.074900
0.073300
0.071900
0.070700
0.069600
0.068700
0.068000
0.067500
0.067200
0.067100

0.91970
0.92000
0.91970
0.91890
0.91740
0.91540
0.91270
0.90930
0.90530
0.90060
0.89520
0.88910
0.88210
0.87430
0.86560
0.85590
0.84520
0.83320
0.82000
0.80520
0.78880
0.77030
0.74920
0.74660
0.74380
0.74100
0.73810
0.73520
0.73220
0.72910
0.72610
0.72300



Second nozzle, midspan 51 0.51540 0.65420
52 0.53520 0.64120

x [in] ylin] 53 0.55490 0.62760
54 0.57470 0.61330

1 0.022600 0.81050 55 0.59450 0.59830
2 0.022900 0.80750 56 0.61420 0.58270
3 0.023300 0.80450 57 0.63400 0.56640
4 0.024000 0.80160 58 0.65370 0.54950
5 0.024800 0.79880 59 0.67350 0.53180
6 0.025800 0.79600 60 0.69320 0.51340
7 0.026900 0.79320 61 0.71300 0.49430
8 0.028300 0.79050 62 0.73270 0.47440
9 0.029800 0.78800 63 0.75250 0.45370
10 0.031400 0.78550 64 0.77220 0.43220
11 0.033200 0.78310 65 0.79200 0.40980
12 0.035200 0.78090 66 0.81170 0.38650
13 0.037300 0.77870 67 0.83150 0.36230
14 0.039500 0.77670 68 0.85120 0.33710
15 0.041800 0.77490 69 0.87100 0.31080
16 0.044200 0.77320 70 0.89080 0.28330
17 0.046800 0.77160 71 0.91050 0.25460
18 0.049400 0.77020 72 0.93030 0.22460
19 0.052100 0.76900 73 0.95000 0.19310
20 0.054800 0.76800 74 0.96980 0.15990
21 0.057700 0.76710 75 0.98950 0.12490
22 0.060500 0.76640 76 1.0093 0.087800
23 0.063400 0.76580 77 1.0290 0.048200
24 0.066300 0.76550 78 1.0487 0.0059000
25 0.069300 0.76530 79 1.0493 0.0046000
26 0.072200 0.76530 80 1.0501 0.0035000
27 0.075100 0.76550 81 1.0511 0.0025000
28 0.078000 0.76590 82 1.0522 0.0017000
29 0.080900 0.76640 83 1.0535 0.0010000
30 0.10060 0.77000 84 1.0548 0.00040000
31 0.12040 0.77260 85 1.0562 1.0000e-04
32 0.14010 0.77410 86 1.0576 0.0000
33 0.15990 0.77460 87 1.0590 1.0000e-04
34 0.17960 0.77420 88 1.0604 0.00040000
35 0.19940 0.77300 89 1.0617 0.00090000
36 0.21910 0.77090 90 1.0630 0.0015000
37 0.23890 0.76800 91 1.0641 0.0024000
38 0.25860 0.76430 92 1.0651 0.0034000
39 0.27840 0.75990 93 1.0660 0.0045000
40 0.29820 0.75480 94 1.0667 0.0057000
41 0.31790 0.74900 95 1.0672 0.0071000
42 0.33770 0.74240 96 1.0675 0.0085000
43 0.35740 0.73520 97 1.0676 0.0099000
44 0.37720 0.72730 98 1.0676 0.010300
45 0.39690 0.71880 99 1.0675 0.010700
46 0.41670 0.70960 100 1.0675 0.011100
47 0.43640 0.69980 101 1.0674 0.011500
48 0.45620 0.68940 102 1.0674 0.011900
49 0.47590 0.67830 103 1.0673 0.012400

50 0.49570 0.66660 104  1.0672 0.012800
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105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

1.0670

1.0669

1.0476

1.0282

1.0089

0.98960
0.97030
0.95100
0.93170
0.91240
0.89310
0.88750
0.88190
0.87630
0.87070
0.86510
0.85940
0.85380
0.84820
0.84260
0.83690
0.83130
0.82570
0.82010
0.81440
0.79860
0.78260
0.76660
0.75060
0.73470
0.71870
0.70270
0.68670
0.67080
0.65480
0.63880
0.62280
0.60690
0.59090
0.57490
0.55890
0.54300
0.52700
0.51100
0.49510
0.47910
0.46310
0.44710
0.43120
0.41520
0.39920
0.38320
0.36730
0.35130

0.013100
0.013500
0.062100
0.11070
0.15930
0.20780
0.25640
0.30500
0.35350
0.40210
0.45070
0.46450
0.47850
0.49230
0.50610
0.51970
0.53320
0.54660
0.55980
0.57290
0.58570
0.59830
0.61070
0.62290
0.63480
0.66660
0.69630
0.72370
0.74880
0.77190
0.79310
0.81280
0.83110
0.84800
0.86380
0.87850
0.89210
0.90480
0.91660
0.92760
0.93770
0.94700
0.95560
0.96340
0.97050
0.97680
0.98250
0.98750
0.99180
0.99540
0.99840
1.0007
1.0023
1.0033
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159
160
161
162
163

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

0.33530
0.31930
0.30340
0.28740
0.27140
0.25540
0.23950
0.22350
0.20750
0.19150
0.17560
0.15960
0.14360
0.12760
0.11170
0.095700
0.079700
0.063700
0.047800
0.031800
0.029900
0.028200
0.026700
0.025400
0.024400
0.023500
0.023000
0.022600
0.022500

1.0036

1.0032

1.0021

1.0002

0.99770
0.99440
0.99030
0.98540
0.97970
0.97310
0.96560
0.95710
0.94750
0.93690
0.92500
0.91180
0.89710
0.88070
0.86240
0.84180
0.83900
0.83610
0.83310
0.82990
0.82670
0.82350
0.82020
0.81680
0.81350



Second nozzle, tip

Nelle N No MU, TN "SR UL N6 W4

x [in]

-0.022100
-0.021800
-0.021400
-0.020800
-0.020000
-0.019000
-0.017900
-0.016600
-0.015100
-0.013500
-0.011800
-0.0099000
-0.0079000
-0.0058000
-0.0035000
-0.0012000
0.0013000
0.0038000
0.0064000
0.0091000
0.011800
0.014600
0.017400
0.020200
0.023000
0.025900
0.028700
0.031500
0.034200
0.055900
0.077500
0.099100
0.12070
0.14230
0.16390
0.18560
0.20720
0.22880
0.25040
0.27200
0.29370
0.31530
0.33690
0.35850
0.38010
0.40170
0.42340
0.44500
0.46660
0.48820

y [in]

0.90100
0.89810
0.89520
0.89230
0.88950
0.88670
0.88400
0.88140
0.87880
0.87640
0.87400
0.87180
0.86970
0.86770
0.86580
0.86410
0.86260
0.86120
0.85990
0.85880
0.85790
0.85710
0.85650
0.85610
0.85580
0.85570
0.85580
0.85600
0.85640
0.85950
0.86130
0.86190
0.86140
0.85990
0.85740
0.85400
0.84970
0.84450
0.83850
0.83180
0.82430
0.81600
0.80700
0.79740
0.78700
0.77590
0.76420
0.75180
0.73880
0.72510

171}

0.50980
0.53150
0.55310
0.57470
0.59630
0.61790
0.63950
0.66120
0.68280
0.70440
0.72600
0.74760
0.76930
0.79090
0.81250
0.83410
0.85570
0.87730
0.89900
0.92060
0.94220
0.96380
0.98540
1.0071
1.0287
1.0503
1.0719
1.0934
1.0941
1.0949
1.0958
1.0970
1.0982
1.0995
.1009
1023
1037
1051
1064
1077
1088
1098
1107
113
1118
1121
1122
1122
1122
1122
A121
1120
119
117

Pk hd et bk Peh et btk fd pmd b bt bk pd b fmmt hd d b

0.71070
0.69570
0.68000
0.66370
0.64660
0.62900
0.61060
0.59150
0.57170
0.55120
0.53000
0.50790
0.48510
0.46150
0.43700
0.41150
0.38250
0.35780
0.32940
0.29980
0.26900
0.23680
0.20320
0.16800
0.13090
0.091700
0.050000
0.0057000
0.0045000
0.0034000
0.0025000
0.0016000
0.00090000
0.00040000
1.0000e-04
0.0000
1.0000e-04
0.00040000
0.00090000
0.0015000
0.0024000
0.0034000
0.0045000
0.0058000
0.0071000
0.0085000
0.0099000
0.010300
0.010800
0.011200
0.011700
0.012100
0.012600
0.013000



105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

1.1116

1.1114

1.0905

1.0695

1.0486

1.0276

1.0067

0.98570
0.96480
0.94380
0.92290
0.91690
0.91080
0.90470
0.89860
0.89250
0.88640
0.88030
0.87420
0.86810
0.86200
0.85590
0.84980
0.84370
0.83760
0.82040
0.80300
0.78570
0.76840
0.75110
0.73370
0.71640
0.69910
0.68170
0.66440
0.64710
0.62980
0.61240
0.59510
0.57780
0.56050
0.54310

0.013400
0.013900
0.061400
0.10900
0.15650
0.20410
0.25170
0.29920
0.34680
0.39430
0.44190
0.45550
0.46940
0.48320
0.49720
0.51110
0.52500
0.53900
0.55300
0.56690
0.58060
0.59420
0.60760
0.62080
0.63380
0.66970
0.70410
0.73660
0.76660
0.79430
0.81990
0.84370
0.86580
0.88650
0.90570
0.92380
0.94060
0.95630
0.97100
0.98470
0.99740
1.0092
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147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

0.52580
0.50850
0.49120
0.47380
0.45650
0.43920
0.42180
0.40450
0.38720
0.36990
0.35250
0.33520
0.31790
0.30060
0.28320
0.26590
0.24860
0.23120
0.21390
0.19660
0.17930
0.16190
0.14460
0.12730
0.11000
0.092600
0.075300
0.058000
0.040600
0.023300
0.0060000
-0.011300
-0.013600
-0.015500
-0.017300
-0.018800
-0.020000
-0.020900
-0.021600
-0.022000
-0.022200

1.0201
1.0302
1.0394
1.0478
1.0554
1.0622
1.0682
1.0735
1.0780
1.0817
1.0847
1.0869
1.0883
1.0889
1.0888
1.0878
1.0860
1.0834
1.0799
1.0756
1.0703
1.0641
1.0568
1.0486
1.0392
1.0286
1.0168
1.0036
0.98890
0.97260
0.95450
0.93440
0.93150
0.92830
0.92510
0.92180
0.91830
0.91480
0.91120
0.90760
0.90390



y [in]

x [in}

Figure A.1.3--Second nozzle, tip, midspan, hub.
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A.2 Listing of Instrumentation Locations

| Position No. ! Location % L EX | % Wetted Distance

44 Pressure, 90%, ST = 1.426 0.091 6.38
45 Pressure, 90%, o = 1.420| 0.173 12.13
46 Pressure, 90%, ST = 1.426 |  0.543 38.08
47 Pressure, 90%, oT = 1.426 | 0.872 61.15
48 Pressure, 90%, ST = 1.426 |  1.096 ~ 76.86
80 Pressure, 50%, ST = 1.386 0 0
81 Pressure, 50%, ST = 1.386 | 0.0385 2.78
49 Pressure, 50%, o7 = 1.386 | 0.070 5.05
82 Pressure, 50%, oT = 1.386 |  0.123 8.87
50 Pressure, 50%, ST = 1.386 0.125 9.02
83 Pressure, 50%, ST = 1.386 | 0.173 12.48
84 Pressure, 50%, o1 = 1.386 | 0.244 17.61
85 Pressure, 50%, o1 = 1.386 | 0.3235 23.34
51 Pressure, 50%, ST = 1.386 | 0.477 34.42
52 Pressure, 50%, ST = 1.386 0.821 59.24
53 Pressure, 50%, ST = 1.386 1.048 75.61
54 Pressure, 50%, ST = 1.386 1.119 85.86
55 Pressure, 23%, ST = 1.374 1.244 90.54
56 Pressure, 10%, ST = 1.282 0.084 6.55
57 Pressure, 10%, ST = 1.282| 0.164 12.79
58 Pressure, 10%, ST = 1.282 0.496 38.69
59 Pressure, 10%, o1 = 1.282| 0.802 62.56
60 Pressure, 10%, ST = 1.282 1.047 81.67
6l Pressure, 10%, ST = 1.282 1.169 91.19

Table A.2.1--Heat flux instrumentation, first stage nozzle guide vane, pressure side.
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Position No. Location 2 € % Wetted Distance
62 Suction, 90%, ST = 1.726 0.095 5.50
63 Suction, 90%, ST = 1.726 0.376 21.78
64 Suction, 90%, ST = 1.726 0.809 46.87
65 Suction, 90%, ST = 1.726 1.127 65.30
66 Suction, 90%, ST = 1.726 1.435 83.20
80 Suction, 50%, ST = 1.706 0.000 0
86 Suction, 50%, ST = 1.706 0.0585 3.43
67 Suction, 50%, ST = 1.706 0.060 352
87 Suction, 50%, ST = 1.706 0.1385 8.12
88 Suction, 50%, ST = 1.706 0.215 12.60
89 Suction, 50%, ST = 1.700 0.285 16.71
90 Suction, 50%, ST = 1.706 0.363 21.28
68 Suction, 50%, ST = 1.706 0.381 22.33
69 Suction, 50%, ST = 1.706 0.603 35.35

~70 Suction, 50%, ST = 1.706 0.857 50.23
71 Suction, 50%, ST = 1.706 1.090 63.89
72 Suction, 50%, ST = 1.706 1.385 81.18
73 Suction, 31%, ST = 1.685 1.579 93.71
74 Suction, 19%, ST = 1.609 1.489 92.54
75 Suction, 10%, ST = 1.580 0.085 538
76 Suction, 10%, ST = 1.580 0.367 23.23
77 Suction, 10%, ST = 1.580 0.567 35.87
78 Suction, 10%, ST = 1.580 1.177 74.49
79 Suction, 10%, ST = 1.580 1.357 85.89

Table A.2.2--Heat flux instrumenatation, first stage nozzle guide vane, suction side.
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Position No. Location 2 E | % Wetted Distance
33 Tip, ST = 0.985 —01665 | 169 |
34 Tip, ST = 0.985 0.379 38.48
35 Tip, ST = 0.985 0.563 57.16
36 Tip, o1 = 0.985 0.702 ~71.27
12 Suction, 90%, ST = 1.101 0.075 6.81
13 Suction, 90%, ST = 1.101 0.509 46.23
37 Suction, 90%, ST = 1.101 0.632 57.40
38 Suction, 90%, ST = 1.101 0.767 69.66
14 Suction, 90%, ST = 1.101 0.900 g1.74
39 Suction, 90%, ST = 1.101 0.991 90.01

1 Pressure, 90%, ST = 0.898 0.043 4.79
2 Pressure, 90%, ST = 0.898 0.406 45.21
3 Pressure, 90%, ST = 0.898 0.561 62.47
20 Suction, 10%, ST = 1.232 0.090 7.31
21 Suction, 10%, ST = 1.232 0.198 16.07
2 Suction, 10%, St = 1.232 0.636 51.62
23 Suction, 10%, ST = 1.232 0.988 80.19
[ Pressure, 10%, ST = 0.955 0.052 5.45
10 Pressure, 10%, ST = 0.955 0.464 48.59
11 Pressure, 10%, ST = 0.955 0.622 65.13

Table A.2.3a--Heat flux instrumentation, first stage rotor.
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Position No. Location Y € | % Wetted Distance
24 Platform 0.222 22.05
25 Platform 0.595 59.09
26 Suction 50%, ST = 1.158 0 0
30 Suction 50%, ST = 1.158 0.067 5.79
31 Suction 50%, ST = 1.158 0.137 11.83
32 Suction 50%, ST = 1.158 0.205 17.71
15 Suction 50%, ST = 1.158 0.330 28.51
16 Suction 50%, ST = 1.158 0.560 48.38
17 Suction 50%, ST = 1.158 0.742 64.10
18 Suction 50%, ST = 1.158 0.949 81.99
19 Suction 50%, ST = 1.158 1.074 92.79
27 Pressure, 50%, oT = 0.919| 0.080 871
28 Pressure, 50%, ST = 0.919 0.148 16.10
29 Pressure, 50%, ST = 0.919] 0.201 21.87
4 Pressure, 50%, ST = 0.919 0.217 23.61
5 Pressure, 50%, ST = 0.919 0.409 44 .50
6 Pressure, 50%, ST = 0.919 0.556 60.50
7| Pressure, 50%, ST = 0919 0.669 —72.80
8 Pressure, 50%, ST = 0.919 0.806 87.70

Table A.2.3b--Heat flux instrumentation, first stage rotor (cont'd).
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Position No. Location 2 €/ | % Wetted Distance
91 Pressure, 50%, ST = 1.392 0.016 1.15
92 Pressure, 50%, ST = 1.392 | 0.101 726
93 Pressure, 50%, ST = 1.392 | 0.168 12.07
94 Pressure, 50%, ST =1.392| 0.514 36.93
95 Pressure, 50%, oT = 1.392| 0.707 50.79
96 Pressure, 50%, ST = 1.392 0.855 61.42
97 Pressure, 50%, ST = 1.392 | 1.071 76.94
98 Suction, 50%, ST = 1.729 0.00 0
99 Suction, 50%, ST = 1.729 | 0.137 7.92
100 Suction, 50%, ST = 1.729 | 0.375 21.69
101 Suction, 50%, ST = 1.729 | 0.545 31.52
102 Suction, 50%, ST = 1.729 | 0.893 51.65
103 Suction, 50%, ST = 1.729 | 0.975 56.39
104 Suction, 50%, ST = 1.729 1.155 66.80
105 Suction, 50%, ST = 1.729 | 1.302 75.30
106 Suction, 50%, ST = 1.729 1.369 ~79.18
107 Suction, 50%, ST = 1.729 1.546 89.42

Table A.2.3¢c--Heat flux instrumentation, first stage rotor (cont'd).
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Position No. Location 2 £ % Wetted Distance
Pl Pressure, 90%, ST = 0.891 0.044 494
P2 Pressure, 90%, ST = 0.891 | 0.403 45.23
P3 Pressure, 90%, ST = 0.891 0.563 63.19
P4 Suction, 90%, ST = 1.125 | 0.068 6.00
P35 Suction, 90%, ST = 1.125 0.187 16.62
P6 Suction, 90%, ST = 1.125 | 0.875 77.78
P7 Pressure, 50%, oT = 0.921 | 0.040 4.34
P8 Pressure, 50%, ST = 0.921 0.125 13.57
P9 Pressure, 50%, ST = 0.921 0.402 43.65
P10 Pressure, 50%, ST = 0.921 | 0.670 72.75
P11 Suction, 50%, ST = 1.165 0.065 5.54
P12 Suction, 50%, ST = 1.165 | 0.141 12.06
P13 Suction, 50%, ST=1.165 | 0.214 1837
P14 Suction, 50%, ST = 1.165 | 0.296 25.41
P15 Suction, 50%, ST = 1.165 | 0.534 4584
P16 Suction, 30%, ST = 1.165 | 0.702 60.26
P17 Suction, 50%, oT = 1.165 [ 0.925 79.40

Table A.2.4a--Pressure Instrumentation, first stage rotor.

P18 Pressure, 10%, ST = 0.948 0.047 4.96
P19 Pressure, 10%, ST = 0.948 0.445 46.94
P20 Pressure, 10%, ST = 0.948 0.593 62.55
P21 Suction, 10%, ST = 1.215 0.083 6.83
P22 Suction, 10%, ST = 1.215 0.231 19.01
P23 Suction, 10%, ST = 1.215 0.594 48.89
P24 Suction, 10%, ST = 1.215 [ 0.896 73.74

Table A.2.4b--Pressure Instrumentation, first stage rotor (cont'd).
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Position No.

Location

2 £

% Wetted Distance

P25 Pressure, 90%, ST = 1.433 0.068 4.75
P26 Pressure, 90%, ST = 1.433 0.528 36.85
P30 Pressure, 90%, oT = 1.433 | 1.064 74.25
P33 Pressure, 50%, ST = 1.425| 0.108 7.58
P34 Pressure, 50%, ST = 1.425 | 0.218 15.30
P35 Pressure, 50%, ST = 1.425 0.518 36.35
P36 Pressure, 50%, ST = 1.425 0.860 60.35
P37 Pressure, 50%, o1 = 1.425| 1.031 ~72.35
P45 Pressure, 10%, o = 1.241 | 0.061 492
P46 Pressure, 10%, ST = 1.241 0.480 38.68
P47 Pressure, 10%, ST = 1.241 1.023 82.43

Table A.2.5a--Pressure Instrumentation, first stage vane.

Position No. Location 2 £/ | % Wetted Distance

P28 | Suction, 90%, ST = 1.662 | 0.100 6.02
P29 Suction, 90%, ST = 1.662 | 0.367 22.08
P30 Suction, 90%, ST = 1.662 | 0.775 46.63

P31 Suction, 90%, ST = 1.662 | 1.088 65.46
P32 Suction, 90%, ST = 1.662 1.359 81.77
P38 Suction, 50%, ST = 1.728 0.114 6.60
P39 Suction, 50%, ST = 1.728 | 0.252 14.58
P40 Suction, 50%, ST = 1.728 | 0.400 23.15
P41 Suction, 50%, ST = 1.728 | 0.592 34.26
P42 Suction, 50%, ST = 1.728 | 0.847 49.02
P43 Suction, 50%, ST = 1.728 1.108 64.12
P44 Suction, 50%, ST = 1.728 1.491 86.28
P43 Suction, 10%, ST = 1.568 | 0.091 580
P49 Suction, 10%, ST = 1.568 | 0.354 22.58
P30 Suction, 10%, ST = 1.568 | 0.563 35.91

P51 Suction, 10%, ST = 1.568 1.148 ~73.21
P52 Suction, 10%, ST = 1.568 1.333 85.01

Table A.2.5b--Pressure Instrumentation, first stage vane (cont'd).
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Position No.

Location

/
P53 Tiub wall, near midpassage, 0.062 aft of leading edge
P34 Hub wall. 0.145 from suction surface, 0.062 aft of leading edge

P55 Hub wall, 0.604 from leading edge, near pressure surface of vane
#1

P56 ot wall, 0.573 from leading edge, near pressure surface of vane
#7

P57 Hub wall, 0.086 from trailing edge, near pressure surface of vane

#7 (in region where vane trailing edge has been removed

Table A.2.5¢--Pressure Instrumentation, first stage vane (cont'd).




A.3 Listing of Data: Pressure and Stanton numbers

% wetted

-82.4 0.88276 0.86732 0.90313 0.91504 0.90972 0.79142

-38.7 1.0000 1.0000 0.94244 0.96289 1.0049 1.0000 1.0000
-4.9000 | 0.96158 0.92878 0.99996 1.0000 1.0000 0.95414 0.94347
5.8000 0.95961 0.93366 0.98175 0.99316 0.98234 0.93519 0.93470
22.600 0.91330 0.88780 0.93381 0.94922 0.93719 0.90828 0.89376
73.200 0.78621 0.77951 0.86190 0.87598 0.85672 0.74576 0.78070
85.000 0.77438 0.74829 0.77274 0.78320 0.79293 0.75972 0.77778

Table A.3.1--Pressure ratio distribution, first vane, 10% span. % wetted distances less than

zero are on pressure surface, % wetted distances greater than zero are on suction surface.

% wetted Run § Run 6 Run 7 Run 8 Run 11 Run 12 Run 13
distance
-72.400 0.86831 0.83445 0.89595 0.89234 0.88943 0.85020 0.84981
-60.400 0.85767 0.83254 0.85645 0.87585 0.87378 0.83929 0.83624
-36.400 0.99996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
-15.300 0.99319 0.96172 0.98844 1.0000 0.99804 0.98611 0.99031
-7.6000 0.95931 0.93971 0.94798 0.94277 0.94423
34.300
64.100 0.77442 0.76364 0.75723 0.76431 0.77397 0.75099 0.78488
74.700 0.81410 0.85742 0.79094 0.80213 0.83659 0.79663 0.85659

Table A.3.2--Pressure ratio distribution, first vane, 50% span. % wetted distances less than

zero are on pressure surface, % wetted distances greater than zero are on suction surface.

% wetted Run § Run 6 Run 7 Run 8 Run 11 Run 12 Run 13
%

-36.800 1.0000 1.0000 0.99998 1.0000 1.0000
-4.7000 0.89197 0.85129 0.93754 0.92958 0.91932 0.93100 0.83100
6.0000 0.86042 0.74738 0.88826 0.87242 0.68900 0.70700
22.100 0.72753 0.72164 0.74183 0.73709 0.72889 0.74900 0.76500
46.600 0.62141 0.62726 0.60763 0.61502 0.62101 0.64200 0.68600
65.500 0.78967 0.78646 0.76420 0.76526 0.77205 0.77000
81.800 0.97514 0.89609 0.99718 0.99624 0.98030

Table A.3.3--Pressure ratio distribution, first vane, 90% span. % wetted distances less
than zero are on pressure surface, % wetted distances greater than zero are on suction

surface.
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% wetted Run § Run 6 Run 7 Run 8 Run 11 Run 12 Run 13
distance

-62.600 0.91500 0.89200 0.75936 0.82600 0.83500 0.79187 0.82190
-46.900 0.91000 0.93600 0.97700 0.95800 0.92170 0.90000
-5.0000 0.97900 0.99823 0.99978
6.8000 0.98300 0.95300 1.00103 0.97000 0.96500 0.87711 0.90190
19.000 0.81900 0.82500 0.72097 0.78800 0.80000 0.74628 0.77429
48.900 0.81100 0.81200 0.77809 0.83600 0.83000 0.78989 0.77714

Table A.3.4--Pressure ratio distribution, first blade, 10% span. % wetted distances less
than zero are on pressure surface, % wetted distances greater than zero are on suction

surface.

% wetted Run$ Run 6 Run 7 Run 8 Run 11 Run 12 Run 13
distance

-72.700 0.83400 0.88400 0.90100 0.89000 0.89900 0.86200 0.88500
-13.600 0.83200 0.85100 0.73400 0.76500 0.87200 0.79600
5.6000 0.72000 0.74000 0.70000 0.70200 0.71300
12.100 0.81800 0.82500 0.89800 0.90700 0.91800 0.81900 0.84500
18.400 0.76000 0.78500 0.71100 0.68100 0.67400 0.75200 0.70900
25.400 0.79600 0.81800 0.79200 0.79100 0.76800 0.80700 0.76300
45.800 0.78300 0.77900 0.79200 0.79100 0.79700 0.76700 0.77800
60.300 0.67200 0.70300 0.63200 0.68600 0.71700 0.69000 0.72200
79.400 0.79000 0.80800 0.77400 0.82000 0.82500 0.77600 0.79500

Table A.3.5--Pressure ratio distribution, first blade, 50% span. % wetted distances less
than zero are on pressure surface, % wetted distances greater than zero are on suction

surface.
% wetted Run § Run 6 Run 7 Run 8 Run 11 Run 12 Run 13
%=

-45.200 0.91200
-4.9000 0.89400 0.86700 0.90700 0.88200 0.88500 0.87600 0.88100
6.0000 0.91700 0.96700 0.85700 0.87600 0.91100 0.84100 0.87900
16.600 0.80500 0.82300 0.77400 0.77500 0.79900 0.75700 0.78600
77.800 0.80300 0.79400 0.75200 0.78900 0.85300 0.72700 0.75400

Table A.3.6--Pressure ratio distribution, first blade, 90% span. % wetted distances less
than zero are on pressure surface, % wetted distances greater than zero are on suction

surface.
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% wetted
distance
-91.190

Run 1

0.013191

Run §

0.015026

Run 6

0.015452

Run 7

0.013966

Run 8

0.014661

Run 11

0.016170

Run 12

0.015130

Run 13

0.014617

-81.670

0.022809

0.025479

0.025560

0.027150

0.023096

0.021765

-62.560

0.0079545

0.0082174

0.0083739

0.0084706

0.0087706

0.0092800

0.0086087

0.0079565

-38.690

0.0055909

0.0040957

0.0040435

0.0063529

0.0064862

0.0068700

0.0039043

0.0035913

-12.790

0.0070364

0.0058348

0.0057652

0.0069832

0.0073486

0.0073000

0.0057043

0.0053565

-6.5500

0.0088909

0.0070870

0.0070870

0.0079160

0.0082569

0.0082500

0.0072000

0.0068783

5.3800

0.0075000

0.0067043

0.0066957

0.0077983

0.0076147

0.0079500

0.0058870

0.0056783

23.230

35.870

0.010964

0.011009

0.010870

0.010866

0.010798

0.011440

0.010800

0.0093739

74.490

0.0060455

0.0056522

0.0058435

0.0052941

0.0050550

0.0051300

0.0058000

0.0056609

85.890

0.0063000

0.0058870

0.0059913

0.0056050

0.0055229

0.0056800

0.0060609

0.0057565

Table A.3.7--Stanton number distribution, first vane, 10% span. % wetted distances
less than zero are on pressure surface, % wetted distances greater than zero are on
suction surface.

% wetted Run 1 Run § Run 6 Run 7 Run 8 Run 11 Run 12 Run 13
distance
-75.610 0.010036 ]0.010365 |0.010522 |0.0096639 |0.010037 0.010320 }0.010200 |0.010252
-59.240 0.0095000 | 0.0088522 | 0.0091304 | 0.0093697 | 0.0096789 0.010020 | 0.0090087 | 0.0088348
-34.420 0.0061182 | 0.0050174 | 0.0054000 | 0.0054622 | 0.0059725 0.0063300 | 0.0049304 |0.0044348
-23.020 0.0032087 | 0.0032696 | 0.0052941 {0.0056239 | 0.0057500 0.0035304 | 0.0035826
-17.360 0.0036522 | 0.0038609 | 0.0055210 | 0.0058073 | 0.0061600 0.0039478 | 0.0039304
-12.300 0.0054545 | 0.0041652 | 0.0041565 | 0.0056555 | 0.0058624 0.0063000 | 0.0042957 | 0.0042696
-9.0200 0.0081182 | 0.0078870 | 0.0076696 | 0.0076975 | 0.0080092 0.0081100 | 0.0068870 | 0.0063130
-8.7500 0.0054636 | 0.0047478 | 0.0047391 | 0.0050420 | 0.0059174 0.0063300 | 0.0048174 | 0.0048348
-5.0500 0.0099091 | 0.0067565 | 0.0068870 | 0.0086555 [ 0.0085780 0.0089400 | 0.0068087 | 0.0064261
-2.7400 0.0076636 | 0.0099739 | 0.0098783 | 0.0097647 | 0.010385 0.010960 |0.010078 | 0.0100000
0.0000 0.014504 | 0.014522
3.4100 0.0086273 | 0.0097826 | 0.0097652 } 0.0092773 | 0.010780 0.0091400 | 0.010217 ]0.010191
3.5200 0.0092818 | 0.0091391 | 0.0092087 | 0.0090336 | 0.0092661 0.0093739 | 0.0087826
8.0700 0.0057818 ] 0.0057913 | 0.0057043 | 0.0058235 | 0.0068440 0.0065700 | 0.0059217 {0.0059217
12.520 0.0053909 | 0.0042870 | 0.0042435 | 0.0055462 | 0.0060826 0.0063300 ] 0.0043913 | 0.0043652
16.600 0.0036522 | 0.0041130 | 0.0067143 | 0.0070917 | 0.0075300 0.0043130 | 0.0042696
22.330 0.010345 | 0.0070435 | 0.0068348 | 0.010151 | 0.010275 0.010620 {0.0077913
35.350 0.0084727 | 0.0070435 | 0.0072348 | 0.0082941 | 0.0089633 0.0089500 | 0.0075304 | 0.0068174
50.230 0.0088273 | 0.0096000 | 0.0098174 | 0.0082017 } 0.0087156 0.0088200 | 0.0098435 | 0.0097217
63.890 0.0080727 10.0085217 ] 0.0086696 | 0.0076134 | 0.0082018 0.0083600 | 0.0089565 | 0.0088696
81.180 0.0078091 | 0.0084609 | 0.0086957 | 0.0074538 | 0.0080459 0.0083100 | 0.0087826 | 0.0086609

Table A.3.8--Stanton number distribution, first vane, 50% span. % wetted distances
less than zero are on pressure surface, % wetted distances greater than zero are on
suction surface.
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% wetted Run 1 Run § Run 6 Run 7 Run 8 Run 11 Run 12 Run 13

distance

-76.860 10.0081364 | 0.0082087 | 0.0084957 | 0.0093277 | 0.0088991 | 0.0080100 | 0.0085739 | 0.0085130
6L.150 |0.0092545 | 0.0086435 | 0.0088783 | 0.0094958 | 0.010303 | 0.0083200 | 0.0096435 | 0.0089652
38.080 | 0.0070545 | 0.0056087 | 0.0058696 | 0.0073445 ]0.0071101 | 0.0063900 | 0.0061913 | 0.0060435
-12.130 | 0.0076909 | 0.0048870 | 0.0039304 | 0.0056723 | 0.0059083 | 0.0055500 | 0.0055304 | 0.0050435
263800 |0.010009 |0.0055565 |0.0058174 |0.0075882 | 0.0081284 | 0.0077900 | 0.0075391 | 0.0059217
5.5000 0.0090727 | 0.0075826 | 0.0081478 | 0.0091933 | 0.0098440 | 0.010710 | 0.0080783 | 0.0078783
21.780 0.0079565 | 0.0081217 | 0.0096975 | 0.010009 [0.010340 | 0.0092261 | 0.0085043
46.870 0.0060000 | 0.0062087 | 0.0062696 | 0.0054706 | 0.0054954 | 0.0061600 | 0.0061565 | 0.0059391
65.300 0.0054545 | 0.0046522 | 0.0048696 | 0.0048487 | 0.0049817 | 0.0074000 | 0.0048609 | 0.0030174
83.200 0.0073909 | 0.0062522 | 0.0061739 | 0.0063361 | 0.0070367 | 0.0079000 | 0.0073739 | 0.0044522

Table A.3.9--Stanton number distribution, first vane, 90% span. % wetted distances less than zero
are on pressure surface, % wetted distances greater than zero are on suction surface.

% wetted Run 1 Run § Run 6 Run 7 Run 8 Run 11 Run 12 Run 13
distance

-65.130 0.0071273 | 0.0068261 | 0.0071739 | 0.0091597 | 0.011275 | 0.0069300 | 0.0069652 | 0.0067391
-48.590 0.0066455 | 0.0060522 [ 0.0065913 | 0.0067815 | 0.0071376 | 0.0066600 | 0.0063304 | 0.0058870
-5.4500 0.010309 | 0.0089739 | 0.0098870 | 0.010588 |0.011028 | 0.0090900 | 0.0099913 | 0.0089826
7.3100 0.010482 | 0.0053304 | 0.0046870 | 0.0035882 | 0.0044128 | 0.0048500 [ 0.0041304 | 0.0036696
16.070 0.0074091 | 0.0050870 | 0.0046000 { 0.0035714 | 0.0047431 [ 0.0047400 [ 0.0052783 | 0.0051739
51.620 0.0065652 | 0.0064348 | 0.0072353 | 0.0077064 | 0.0070000 | 0.0065913 | 0.0064261
80.170 0.0068727 | 0.0069391 | 0.0063130 [ 0.0066387 | 0.0067982 | 0.0060300 | 0.0069478 | 0.0067043

Table A.3.10--Stanton number distribution, first blade, 10% span. % wetted distances less than
zero are on pressure surface, % wetted distances greater than zero are on suction surface.
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% wetted Run 1 Run 5§ Run 6 Run 7 Run 8 Run 11 Run 12 Run 13
distance

-87.700 0.0076000 ] 0.0077739 [0.0079739 | 0.0081008 | 0.0087431 | 0.0078200 0.0080957 | 0.0079652
-72.800 0.0075455 | 0.0068348 [ 0.0070087 | 0.0071513 | 0.0076514_§ 0.0067000 0.0070435 | 0.0067652
-60.500 0.0070455 | 0.0066174 | 0.0066348 | 0.0071092 | 0.0076697 | 0.0068300 0.0067043 | 0.0065217
-44.500 0.0056727 | 0.0052522 [0.0051652 ] 0.0056471 | 0.0058440 | 0.005 1700 | 0.0052783 |} 0.0051391
-23.610 0.0059000 | 0.0055478 | 0.0058609 | 0.0059580 | 0.0058899 0.0053900 | 0.0058087 | 0.0055217
-21.870 0.0060364 | 0.0053217 | 0.0055043 | 0.0059832 | 0.0062202 | 0.0057 100 | 0.0054261 | 0.0054261
20200 |0.0064182 | 0.0056435 | 0.0057043 | 0.0057059 | 0.0061284 0.0054600 | 0.0057652 | 0.0058957
-16.100 0.0062182 | 0.0051826 | 0.0059304 | 0.0061345 | 0.0064679 0.0062100 | 0.0053739 | 0.0055391
-12.300 0.0087909 | 0.0048000 | 0.0052087 0.0080348 | 0.0045739
-8.7100 0.0065909 | 0.0051217 |0.0050522 | 0.0055378 | 0.0058349 | 0.0056100 0.0053043 | 0.0050609
0.0000 0.015782 |0.016539 [0.016365 |0.014429 |0.015321 0.013980 | 0.016800 | 0.016478
5.7000 0.0061545 | 0.0053565 | 0.0053739 | 0.0070420 | 0.0084954 0.0073300 | 0.0069217 | 0.0060957
11.830 0.010255 |0.0037478 | 0.0028522 | 0.0040504 | 0.0049541 | 0.0055900 0.0060348 | 0.0059652
15.000 0.0080182

17.710 0.0080364 | 0.0065130 | 0.0057478 | 0.0065378 | 0.0072936 | 0.0072700 0.0088870 | 0.0088870
24.200 0.0065455

28.510 0.0054636 | 0.0078957 | 0.0080522 | 0.0073109 | 0.0074587 | 0.0071800 0.0078174 | 0.0076609
48.380 0.0087273 | 0.0072957 | 0.0072870 | 0.0066471 | 0.0071009 | 0.0066600 0.0072522 | 0.0070870
64.100 0.0062182 | 0.0056435 | 0.0056609 | 0.0052689 | 0.0056422 0.0052900 | 0.0058870 | 0.0057652
81.990 0.0054091 | 0.0049130 | 0.0050522 | 0.0045882 | 0.0048624 0.0044600 | 0.0052000 | 0.0049826
92.790 0.0053273 | 0.0047652 | 0.0048348 | 0.0045546 | 0.0047431 | 0.0044500 0.0050870 1 0.0048261

Table A.3.11--Stanton number distribution, first blade, 50% span. % wetted
distances less than zero are on pressure surface, % wetted distances greater than zero
are on suction surface.

% wetted Run 1 Run § Run 6 Run 7 Run 8 Run 1! Run 12 Run 13
distance

-62.470 0.0073455 | 0.0066696 | 0.0065217 | 0.0070084 | 0.0075413 | 0.0062500 0.0066348 | 0.0064087
-40.420 0.0053913 | 0.0054174 | 0.0055294 | 0.0058165 | 0.0050300 0.0054522 | 0.0054087
-4.7900 0.0099545 | 0.0086522 | 0.0085391 0.0085505 | 0.0074300 | 0.0086174 | 0.0084783
6.8100 0.0077818 | 0.0093478 | 0.0090609 | 0.0098151 | 0.010606 0.0085800 | 0.0083391 | 0.0079826

46.230 0.0084364 | 0.0080087 | 0.0077391 | 0.0082017 | 0.0086147 0.0070200 | 0.0080348 | 0.0076000
57.400 0.0074545

69.660 0.010464

81.740 0.0088545 | 0.0098783 | 0.0098783 |0.0094118 {0.0099358 0.0088400 ] 0.010017 | 0.0098609
90.010 0.0079000 | 0.0080696 | 0.0081913 | 0.0076891 | 0.0081743 0.0071200 | 0.0085391 | 0.0081913

Table A.3.12--Stanton number distribution, first blade, 90% span. % wetted
distances less than zero are on pressure surface, % wetted distances greater than zero
are on suction surface.
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